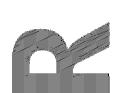


Storm Water Management Plan


Calculations & Summaries

Gyropolis Addition / Remodel Bloomington, MN

Project No. 16318

September 28, 2022

*

I hereby certify that this plan, specification or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

Brian J. Field, P.E.

Reg. No. 57224

<u>Prepared By:</u> Anderson Engineering

Anderson Engineering of MN, LLC 13605 1st Avenue North, Suite 100 Plymouth, MN 55441

Ph: 763.412.4000 Fax: 763.412.4090 Prepared For: HTG Architects 1010 Mainstreet, Suite 100 Hopkins, MN 55343

Anderson Engineering of Minnesota, LLC • 13605 1st Avenue North, Suite 100 • Plymouth, Minnesota 55441 • (763) 412-4000 Main • (763) 412-4090 Fax • www.ae-mn.com

Table of Contents

- Cover / Certification Page
- Table of Contents
- Project Overview
- Existing Site Conditions
- Soils
- Site History
- Proposed Site Conditions
- Methodology
- Nine Mile Creek Watershed District Rules & Regulations
- Summary

Appendix – Exhibits and Calculations

- A Existing Drainage Map
- B Proposed Drainage Map
- C Hydrocad Report
- D MIDS Results
- E Storm Sewer Sizing Worksheet
- F Civil Plan
- G Historical Borings
- H LUST Closure Letter
- I Tank Removal Letter

September 28, 2022

Stormwater Narrative/Summary Gyropolis Addition Bloomington, MN

Project Overview

The construction of two new addition and the redevelopment of two parcels are proposed for the Gyropolis Restaurant located at 2325 W 90th ST in Bloomington MN. The Owner on the Gyropolis Restaurant has purchased the Lot to the west and is looking to expand the existing building and reconstruct the parking lot. The west parcel has an area of 0.31 acres and the east parcel with an area of 0.43 acres. These two parcels will be platted into one lot with a total area of 0.74 acres.

The project will include the construction of a 685 SF addition to the west elevation of the existing building and a 1,725 SF addition to the east elevation. An outdoor patio area and drive thru lane to the south is proposed as part of the redevelopment, and as such the Owner will obtain an access easement from the neighbor to the south for the drive thru access. Construction is planned to begin in the Spring of 2023 and completed in Summer of 2023.

Existing Site Conditions

The property is bounded by Penn Ave S to the east, 90th ST W to the North and a Burger King to the South. The entire site surface drains to the north and east towards the intersection of Penn and 90th where it is collected in the local storm sewer system at a low point. An existing gas station currently resides on the east parcel and will be demolished as part of the project.

The nearly 31-acre property is bounded by Interstate 94 to the west, CSAH 13 to the east, the FedEx Distribution Building to the north, and the Clam Corporation to the south. Generally, the site surface drains to the north towards the existing wetland onsite with small portions flowing directly to the existing Clam pond and the Brockton Ln N ditch. The existing wetland has an overflow structure near the northeast corner of the site were water exits. Water then follows the Brockton Ln N ditch to the north and eventually discharges into Grass Lake. The existing drainage pattern can be seen in **Exhibit A: Existing Drainage Map** within the appendices of this report.

Site History

Currently, a gas station/convenience store exists on Parcel 9000 or the east parcel. This gas station has been closed since 2008 and is abandoned. This property identified as Premium Stop is listed as a LUST site and was reported in 1990 during the removal and replacement of three USTs on the property. The site was mitigated, and the LUST was closed by the MPCA in 1990. More recently, the remaining USTs were removed in 2011 with no leaking noted. A full Phase I Environmental Site Assessment was completed in 2013 by Landmark Environmental LLC and has been included as part of this submittal. The following documentation has been included as part of the appendix of this report:

Exhibit H: LUST Closure LetterExhibit I: Tank Removal Letter

September 28, 2022

Stormwater Narrative/Summary Gyropolis Addition Bloomington, MN

Soils

Soil testing for the project is currently pending. Four to six test borings are to be performed on site within the building footprint and within the proposed infiltration BMP. In 1991, EnecoTech Environmental Consultants performed four soil borings near the northeast corner of the site and is in direct proximity to the proposed infiltration BMP. Results indicate that SP sand was found at depths of 5-30+ feet below grade with a water table near 40' in depth. Based off of this information and per the Minnesota Stormwater Manual, a design infiltration rate of 0.80 in/hr is to be used for the SP type soil or Hydraulic soil group 'A'. The four soil boring results can be found within **Exhibit G: Historical Soil Borings** within the appendix of this report.

Proposed Site Conditions

The proposed construction will consist of two additions to the existing building, reconstruction of the existing parking lot, and a new outdoor dining area. For a full set of Civil plans, refer to **Exhibit F** within the appendix of this report.

The proposed drainage pattern will be relatively unchanged. The entire proposed site drains towards the northeast corner of the site and into the city storm network at the intersection of Penn and West 90th. The project is proposing a filtration rock trench (10P) under permeable pavers located in the northeastern corner of the site to meet local rules and regulations. Stormwater will either surface drain to the permeable pavers or will be captured within the local storm sewer system which outlets into the rock filtration trench. Discharge from the filtration rock trench (10P) will be limited by an outlet control structure and concrete weir before leaving the site. The proposed drainage pattern can be seen in **Exhibit B: Proposed Drainage Map** within the appendices of this report.

Methodology

Hydrocad

The Hydrologic characteristics of the site were modeled using HydroCAD software. TR55/TR20 methods were utilized. Existing and proposed drainage areas were determined via review of as-built data, current land survey data, and aerial photos.

The 2, 10, & 100-year frequency events were analyzed for peak runoff rate control in the existing and proposed conditions. The MSE-3 24-hr distribution was used in analysis. Depths for the 2, 10, & 100-year storms were found to be 2.86", 4.26", and 7.32" respectively.

Runoff from pervious and impervious surfaces were calculated separately in order to more accurately model the runoff volume from the site surfaces. Time of Concentrations have been calculated using the HydroCAD program individually for each sub-catchment. Results of this analysis are summarized below, and a report can be seen in **Exhibit C: Hydrocad Report**.

Stormwater Narrative/Summary Gyropolis Addition Bloomington, MN

Stormwater Conveyance

The storm sewer network was designed based upon the 10-year storm event. The rational method was employed to determine the flowrate into the storm sewer; pipe diameter, inlet elevations, and slopes were designed to accommodate the ten-year flow through the devices. **Exhibit E: Storm Sewer Sizing Worksheet** attached in the Appendix shows the individual calculations for the storm network.

A Manning's Coefficient of 0.013 was assumed, and overflow routes to drain low points along curb and gutter provide a minimum freeboard of 1 foot. All tributary area was considered for calculations.

Nine Mile Creek Watershed District Rules

In addition to the rules described below, the proposed design and report will utilize those definitions and procedural requirements as described in Rule 1.0 of the Nine Mile Creek Watershed District Rules. **Table 1** below summarizes the watershed rules that are **not** applicable to this site:

Tal	Table 1: Non-Applicable Watershed Rules						
2.0	Floodplain Alteration						
3.0	Wetlands Management						
6.0	Waterbody Crossing and Structures						
7.0	Shoreline and Streambank Improvements						
8.0	Sediment Removal						
9.0	Appropriation of Public Surface Waters						

Below is a summary of other applicable watershed rules and regulations have been met for this project:

Rule 4.0 – Stormwater Management

This project will disturbed more than 50 percent of the existing impervious surface on site and therefore, the stormwater criteria of section 4.3 applies.

4.3.4.a - Volume Control

Regulation: Provide for the retention onsite of 1.1 inches of runoff from the regulated impervious surface of the site.

Abstraction Req (CF): $0.574 \text{ Ac } \times 43,560 \text{ CF} / \text{ Ac } \times 1.1 \text{ in.} \times 1 \text{ ft} / 12 \text{ in} = 2,292 \text{ CF}$

Proposed:

The underground rock filtration trench (10P) has been sized to treat the entire abstraction for the site. Pretreatment for the filtration trench will be provided via 2' sump manholes at all inlet locations. Parameters for 10P include a surface area of 1994 SF, a depth ranging 4.0' to 5.4', and a void ration of 40% of the storage rock.

September 28, 2022

Stormwater Narrative/Summary Gyropolis Addition Bloomington, MN

The release of stormwater from the rock trench will be controls through a concrete weir within OCS-1, set at an elevation of 830.40. Per **Exhibit C: Hydrocad Report**, the cumulative volume below the concrete weir is **2,313 CF**.

The filtration trench (10P) has been sized to allow a drawdown time of less than 48 hours. By using a design filtration rate of 0.80 in/hr, the trech surface area, and volume below the lowest outlet, the drawdown time has been calculated as follows:

Drawdown Time (HR) = V/vA(1/12) = 2313/(0.8x1994)(1/12) = 17.39 HR

4.3.1.b - Rate Control

Regulation: Limit Peak runoff flow rates to that form existing conditions for the 2, 10, and 100-year frequency storm events for all collection points where stormwater discharge leaves the site.

Proposed:

Rate control was analyzed for the 2, 10, and 100-year storm event. Existing condition rates and proposed rated were compared for the entire property area and at individual discharge points on the site. Runoff rates for the proposed activity shall not exceed existing runoff rates for the 2, 10, and 100-year critical storm.

A full summary of the existing and proposed HydroCAD results can be found within **Exhibit C: Hydrocad Report** in the appendices of this report. Tabulations of the existing and proposed peak runoff rates can be found in **Table 2** shows that post development rates are held below existing conditions:

Table 2: Rate Control Summary										
Storm Event	1R – Existing (CFS)	10R - Proposed	10P – HWL							
2-year	2.77	0.38	830.48							
10-year	4.35	3.31	830.74							
100-year	7.73	6.08	831.12							

4.3.1.c – Water Quality

Regulation: Provide for at least 60 percent annual removal efficiency for total phosphorus and at least 90 percent annual removal efficiency for total suspended solids from site runoff.

Proposed:

The proposed site met the pollution load reduction requirement through the filtration practices provided by the permeable pavement / rock filtration trench. The proposed conditions were modeled using the MIDS Calculator (version 4). A full summer of the results can be found in **Exhibit D: MIDS Results** and a tubulation of proposed pollutant loads can be found in **Table 3** below:

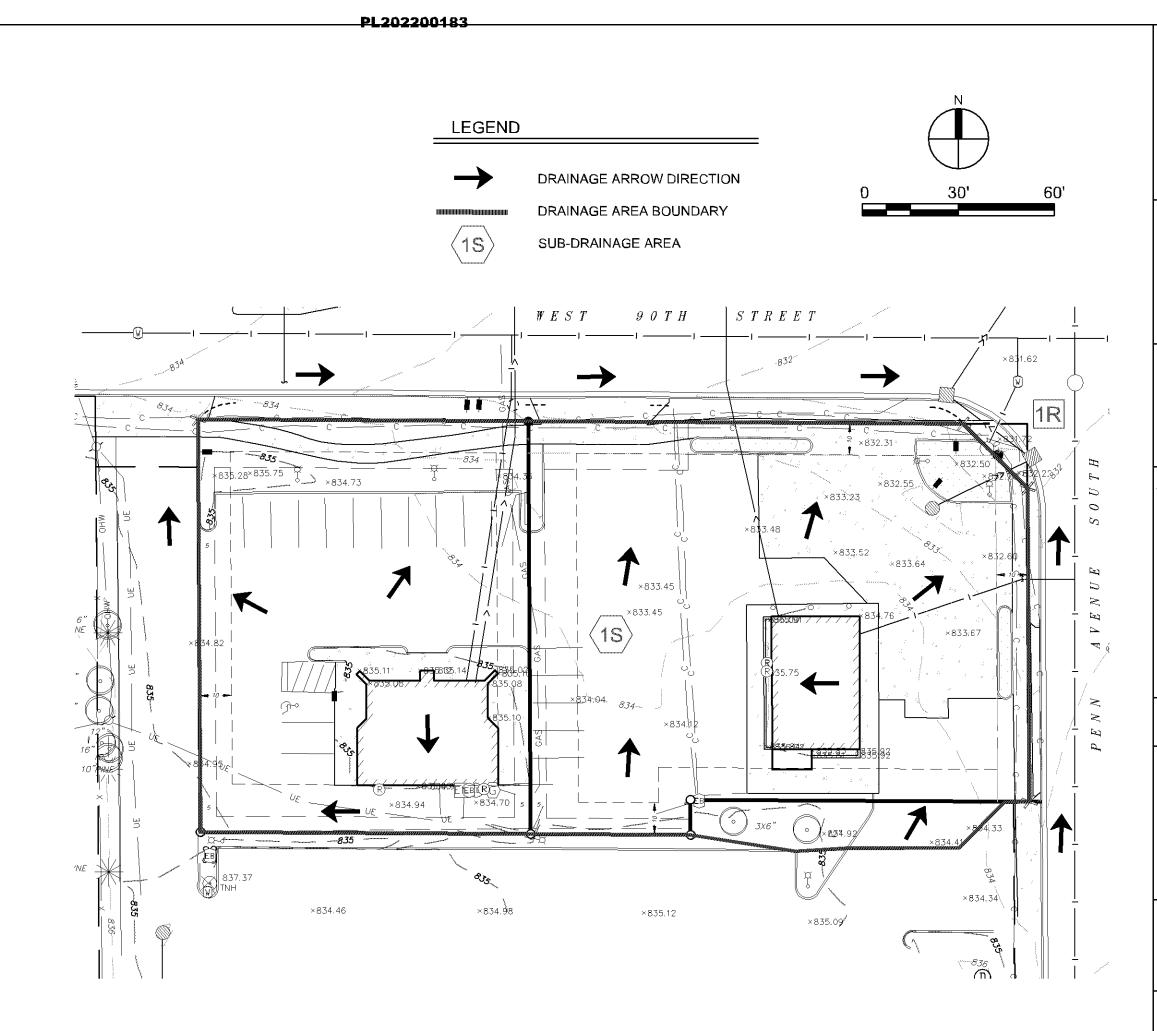
Stormwater Narrative/Summary Gyropolis Addition Bloomington, MN

Table 3: MIDS Calculator Summary									
Pollutant	Removal Efficiency (%)	Annual Runoff Load (lbs)							
TSS	92	16.6							
Total Phosphorus	92	0.0918							

4.3.3 - Low-floor Elevation

Regulation: Reconstructed buildings must be constructed at least two feet above the 100-year high water elevation or one foot above the natural overflow of a waterbody.

Proposed:


The low floor elevation of the existing building and additions is to be 835.20. The 100-year HWL of 10P is proposed at 831.12.

Rule 5.0 - Erosion and Sediment Control

Anderson Engineering will obtain a permit from the district that incorporates and approves an erosion and sediment control plan for the project before the start of the project. Disturbance will not be greater than 1.0 acre in area and therefore a Stormwater Pollution Prevention Plan (SWPPP) is **not** required for the project. It is the responsibility of the contractor to implement and modify the erosion and sediment control plan as construction proceeds.

Summary

The site layout and final grading is designed to take advantage of the existing terrain for drainage and will result in a gently rolling topography matching the surrounding landscape. Within the project boundary, some changes to the existing drainage patterns are expected due to the proposed structures and other site improvements. The project design does not propose to make major changes to drainage divides.

13605 1st Avenue N. #100 Plymouth, MN 55441 | **ae-mn**.com P 763.412.4000 | **f** 763.412.4090

GYROPOLIS

ADDITION / REMODELING

2325 W 90TH ST BLOOMINGTON, MN

REVISION LOG

NO. DATE DESCRIPTION

CITY SUBMITTAL **SEPTEMBER 28, 2022**

DRAWING TITLE

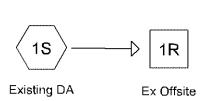
EXISTING DRAINAGE MAP

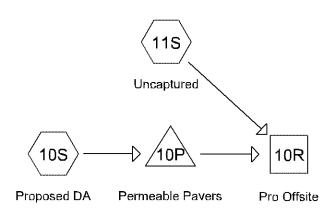
DRAWING NO.

PLOTTED: 9/27/22

COMM. NO. 16318

SWMP\16318_PROPOSED DRAINAG


CAD


Civil_01

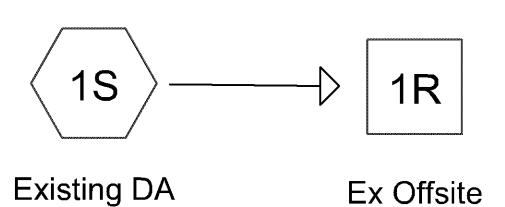
GYROPOLIS REDEVELOPMENT

NO.	DATE	DESCRIPTION	
			_
			_

C - HYDROCAD REPORT

Existing Conditions

Proposed Conditions



Routing Diagram for 16318_Hydrocad
Prepared by Anderson Engineering of MN, LLC, Printed 9/27/2022
HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Existing Conditions

Prepared by Anderson Engineering of MN, LLC
HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Printed 9/27/2022 Page 2

Project Notes

Rainfall events imported from "NRCS-Rain.txt" for 5327 MN Hennepin

Prepared by Anderson Engineering of MN, LLC
HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Printed 9/27/2022 Page 3

Rainfall Events Listing

	Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
_	1	2-Year	MSE 24-hr	3	Default	24.00	1	2.86	2
	2	10-Year	MSE 24-hr	3	Default	24.00	1	4.26	2
	3	100-Year	MSE 24-hr	3	Default	24.00	1	7.32	2

Prepared by Anderson Engineering of MN, LLC
HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Printed 9/27/2022 Page 4

Area Listing (selected nodes)

0.766	94	TOTAL AREA
0.708	98	Paved parking, HSG A (1S)
0.058	39	>75% Grass cover, Good, HSG A (1S)
(acres)		(subcatchment-numbers)
Area	CN	Description

Prepared by Anderson Engineering of MN, LLC
HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Printed 9/27/2022 Page 5

Soil Listing (selected nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.766	HSG A	18
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
0.000	Other	
0.766		TOTAL AREA

Prepared by Anderson Engineering of MN, LLC
HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Printed 9/27/2022

Page 6

Ground Covers (selected nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.058	0.000	0.000	0.000	0.000	0.058	>75% Grass cover, Good	18
0.708	0.000	0.000	0.000	0.000	0.708	Paved parking	1 S
0.766	0.000	0.000	0.000	0.000	0.766	TOTAL AREA	

MSE 24-hr 3 2-Year Rainfall=2.86"

Prepared by Anderson Engineering of MN, LLC
HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Printed 9/27/2022

Page 7

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Existing DA Runoff Area=0.766 ac 92.43% Impervious Runoff Depth>2.14"

Tc=7.0 min CN=94 Runoff=2.77 cfs 0.137 af

Reach 1R: Ex Offsite Inflow=2.77 cfs 0.137 af

Outflow=2.77 cfs 0.137 af

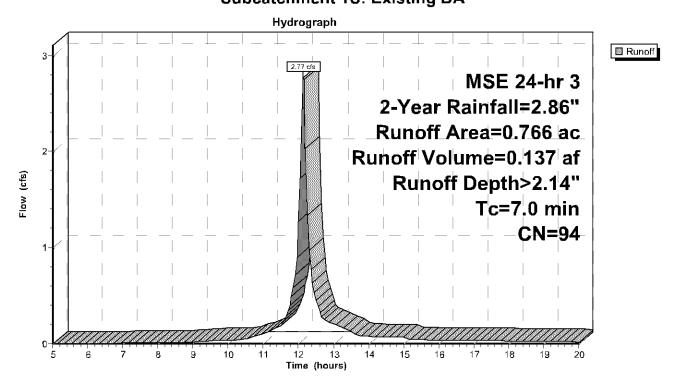
Total Runoff Area = 0.766 ac Runoff Volume = 0.137 af Average Runoff Depth = 2.14" 7.57% Pervious = 0.058 ac 92.43% Impervious = 0.708 ac

MSE 24-hr 3 2-Year Rainfall=2.86"

Prepared by Anderson Engineering of MN, LLC HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC Printed 9/27/2022

Page 8

Summary for Subcatchment 1S: Existing DA


0.137 af, Depth> 2.14" Runoff 2.77 cfs @ 12.14 hrs, Volume=

Routed to Reach 1R: Ex Offsite

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 2-Year Rainfall=2.86"

_	Area	(ac)	CN	Desc	ription			
	0.	708	98	Pave	d parking,	HSG A		
_	0.058 39 >75% Grass cover, Good,					over, Good	, HSG A	
	0.	766	94	Weig	hted Aver	age		
	0.058 7.57% Pervious Area				% Perviou	s Area		
	0.	708		92.43	3% Imper\	ious Area		
	Tc	Lengt	:h §	Slope	Velocity	Capacity	Description	
_	(min) (feet) (ft/ft) (ft/sec) (cfs)					(cfs)	·	
	7 n					•	Direct Entry	

Subcatchment 1S: Existing DA

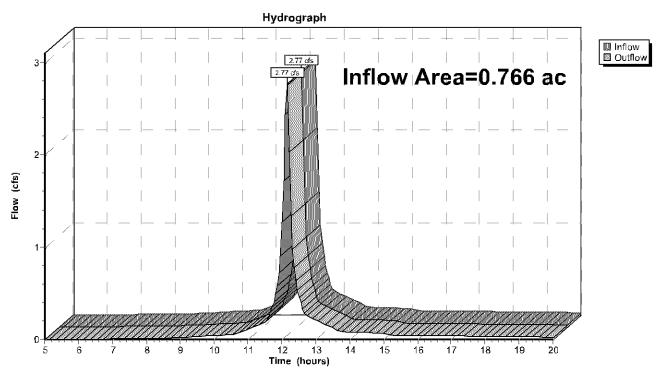
MSE 24-hr 3 2-Year Rainfall=2.86"

Prepared by Anderson Engineering of MN, LLC HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC Printed 9/27/2022

Page 9

Summary for Reach 1R: Ex Offsite

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 0.766 ac, 92.43% Impervious, Inflow Depth > 2.14" for 2-Year event

Inflow = 2.77 cfs @ 12.14 hrs, Volume= 0.137 af

Outflow = 2.77 cfs @ 12.14 hrs, Volume= 0.137 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach 1R: Ex Offsite

MSE 24-hr 3 10-Year Rainfall=4.26"

Prepared by Anderson Engineering of MN, LLC
HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Page 10

Printed 9/27/2022

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Existing DA Runoff Area=0.766 ac 92.43% Impervious Runoff Depth>3.47"

Tc=7.0 min CN=94 Runoff=4.35 cfs 0.221 af

Reach 1R: Ex Offsite

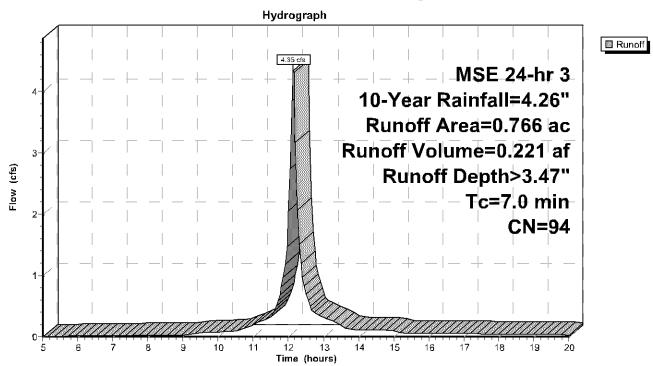
Inflow=4.35 cfs 0.221 af Outflow=4.35 cfs 0.221 af

Total Runoff Area = 0.766 ac Runoff Volume = 0.221 af Average Runoff Depth = 3.47" 7.57% Pervious = 0.058 ac 92.43% Impervious = 0.708 ac

MSE 24-hr 3 10-Year Rainfall=4.26"

Prepared by Anderson Engineering of MN, LLC HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC Printed 9/27/2022 Page 11

Summary for Subcatchment 1S: Existing DA


0.221 af, Depth> 3.47" Runoff 4.35 cfs @ 12.14 hrs, Volume=

Routed to Reach 1R: Ex Offsite

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 10-Year Rainfall=4.26"

	Area	(ac)	CN	Desc	ription			
	0.	708	98	Pave	d parking,	HSG A		
_	0.	0.058 39 >75% Grass cover, Good					, HSG A	
-	0.	766	94	Weig	hted Aver	age		
	0.058 7.57% Pervious Area 0.708 92.43% Impervious Area				% Perviou	s Ārea		
					3% Imperv	ious Area		
	Τ_	1	LI.	Cl	1/-1is.	O = 10 = 140 +	De a cuinticu	
	Tc	Lengi		Slope	Velocity	Capacity	Description	
	(min)	(fee	τ)	(ft/ft)	(ft/sec)	(cfs)		
	7.0						Direct Entry	

Subcatchment 1S: Existing DA

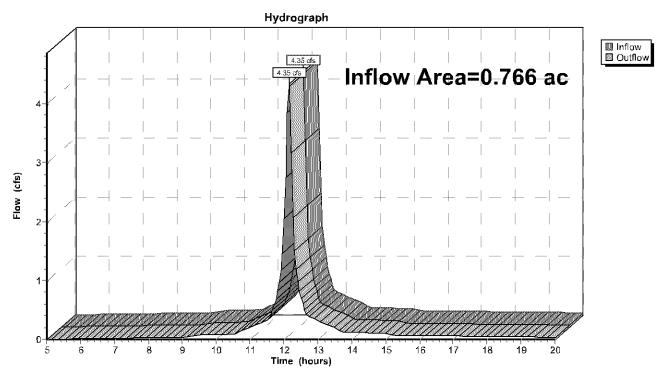
MSE 24-hr 3 10-Year Rainfall=4.26"

Prepared by Anderson Engineering of MN, LLC HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC Printed 9/27/2022

Page 12

Summary for Reach 1R: Ex Offsite

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 0.766 ac, 92.43% Impervious, Inflow Depth > 3.47" for 10-Year event

Inflow = 4.35 cfs @ 12.14 hrs, Volume= 0.221 af

Outflow = 4.35 cfs @ 12.14 hrs, Volume= 0.221 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach 1R: Ex Offsite

MSE 24-hr 3 100-Year Rainfall=7.32"

Prepared by Anderson Engineering of MN, LLC
HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Printed 9/27/2022 Page 13

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Existing DA Runoff Area=0.766 ac 92.43% Impervious Runoff Depth>6.39"

Tc=7.0 min CN=94 Runoff=7.73 cfs 0.408 af

Reach 1R: Ex Offsite

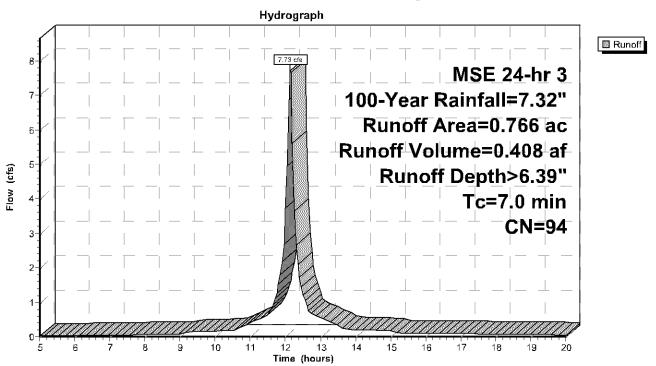
Inflow=7.73 cfs 0.408 af Outflow=7.73 cfs 0.408 af

Total Runoff Area = 0.766 ac Runoff Volume = 0.408 af Average Runoff Depth = 6.39" 7.57% Pervious = 0.058 ac 92.43% Impervious = 0.708 ac

MSE 24-hr 3 100-Year Rainfall=7.32"

Prepared by Anderson Engineering of MN, LLC HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC Printed 9/27/2022 Page 14

Summary for Subcatchment 1S: Existing DA


0.408 af, Depth> 6.39" Runoff 7.73 cfs @ 12.14 hrs, Volume=

Routed to Reach 1R: Ex Offsite

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100-Year Rainfall=7.32"

_	Area	(ac)	CN	Desc	ription			
	0.	708	98	Pave	d parking,	HSG A		
_	0.	0.058 39 >75% Grass cover, Good,					d, HSG A	
	0.	766	94	Weig	hted Aver	age		
	0.058 7.57% Pervious Area					s Ārea		
	0.	708		92.43	3% Imperv	ious Area		
	Тс	Lengt	:h S	Slope	Velocity	Capacity	Description	
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)		
	7.0						Direct Entry.	

Subcatchment 1S: Existing DA

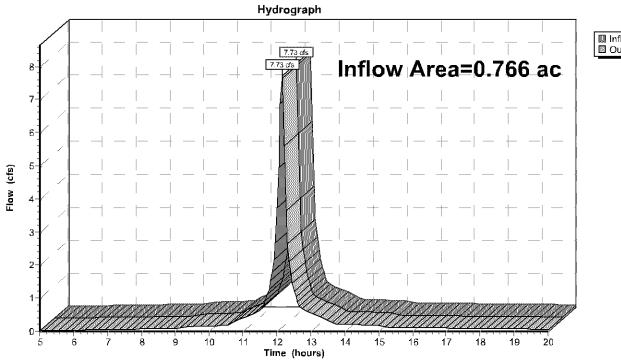
MSE 24-hr 3 100-Year Rainfall=7.32"

Prepared by Anderson Engineering of MN, LLC HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC Printed 9/27/2022

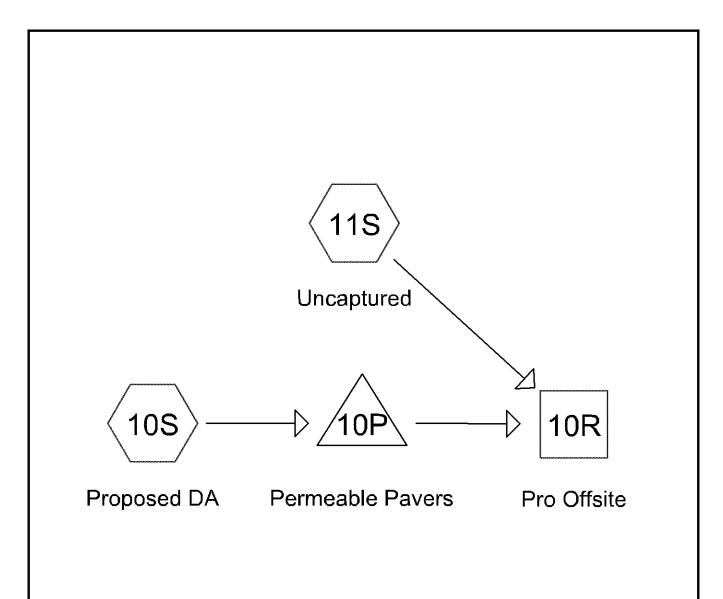
Page 15

Summary for Reach 1R: Ex Offsite

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 0.766 ac, 92.43% Impervious, Inflow Depth > 6.39" for 100-Year event

Inflow = 7.73 cfs @ 12.14 hrs, Volume= 0.408 af


Outflow = 7.73 cfs @ 12.14 hrs, Volume= 0.408 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach 1R: Ex Offsite

Proposed Conditions

Prepared by Anderson Engineering of MN, LLC
HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Printed 9/27/2022 Page 2

Project Notes

Rainfall events imported from "NRCS-Rain.txt" for 5327 MN Hennepin

Prepared by Anderson Engineering of MN, LLC
HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Printed 9/27/2022 Page 3

Rainfall Events Listing

	Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
_	1	2-Year	MSE 24-hr	3	Default	24.00	1	2.86	2
	2	10-Year	MSE 24-hr	3	Default	24.00	1	4.26	2
	3	100-Year	MSE 24-hr	3	Default	24.00	1	7.32	2

Prepared by Anderson Engineering of MN, LLC
HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Printed 9/27/2022 Page 4

Area Listing (selected nodes)

	Area (CN	Description
(ac	res)		(subcatchment-numbers)
0	.146	39	>75% Grass cover, Good, HSG A (10S, 11S)
0	.574	98	Paved parking, HSG A (10S, 11S)
0	.046	98	Permeable Pavers (10S)
0	.766	87	TOTAL AREA

Prepared by Anderson Engineering of MN, LLC
HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Printed 9/27/2022 Page 5

Soil Listing (selected nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.720	HSG A	10S, 11S
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
0.046	Other	10S
0.766		TOTAL AREA

Prepared by Anderson Engineering of MN, LLC
HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Printed 9/27/2022

Page 6

Ground Covers (selected nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.146	0.000	0.000	0.000	0.000	0.146	>75% Grass cover, Good	10S,
							118
0.574	0.000	0.000	0.000	0.000	0.574	Paved parking	10S,
							11S
0.000	0.000	0.000	0.000	0.046	0.046	Permeable Pavers	10S
0.720	0.000	0.000	0.000	0.046	0.766	TOTAL AREA	

Prepared by Anderson Engineering of MN, LLC
HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Printed 9/27/2022

Page 7

Pipe Listing (selected nodes)

Line#	Node In-Invert		Out-Invert Length		Slope	n	Width	Diam/Height Inside-F		
	Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)	
1	10P	827.50	827.10	22.0	0.0182	0.013	0.0	12.0	0.0	

MSE 24-hr 3 2-Year Rainfall=2.86"

Prepared by Anderson Engineering of MN, LLC
HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Page 8

Printed 9/27/2022

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment10S: Proposed DA Runoff Area=0.733 ac 82.54% Impervious Runoff Depth>1.63"

Tc=7.0 min CN=88 Runoff=2.14 cfs 0.099 af

Subcatchment11S: Uncaptured Runoff Area=0.033 ac 45.45% Impervious Runoff Depth>0.44"

Tc=7.0 min CN=66 Runoff=0.02 cfs 0.001 af

Reach 10R: Pro Offsite Inflow=0.38 cfs 0.022 af
Outflow=0.38 cfs 0.022 af

Pond 10P: Permeable Pavers

Peak Elev=830.48' Storage=2,377 cf Inflow=2.14 cfs 0.099 af

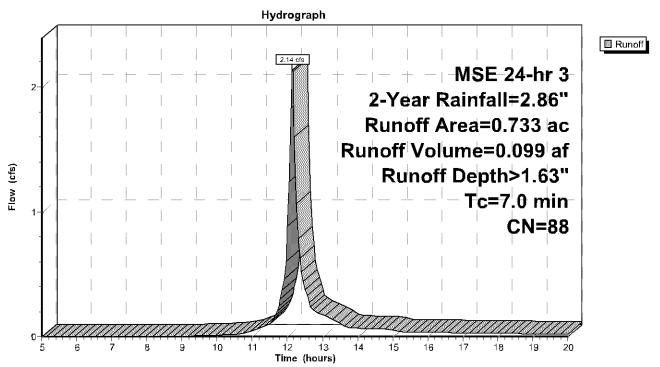
Discarded=0.04 cfs 0.029 af Primary=0.37 cfs 0.020 af Outflow=0.41 cfs 0.050 af

Total Runoff Area = 0.766 ac Runoff Volume = 0.101 af Average Runoff Depth = 1.58" 19.06% Pervious = 0.146 ac 80.94% Impervious = 0.620 ac

MSE 24-hr 3 2-Year Rainfall=2.86"

Prepared by Anderson Engineering of MN, LLC HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC Printed 9/27/2022 Page 9

Summary for Subcatchment 10S: Proposed DA


Runoff = 2.14 cfs @ 12.14 hrs, Volume= 0.099 af, Depth> 1.63"

Routed to Pond 10P: Permeable Pavers

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 2-Year Rainfall=2.86"

_	Area (a	ac)	CN	Desc	ription						
	0.5	59	98	Pave	Paved parking, HSG A						
	0.1	28	39	>75%	√ Grass co	over, Good	H, HSG A				
*	0.0	46	98	Pern	neable Pav	/ers					
	0.733 88 Weighted Average										
	0.128 17.46% Pervious Area					us Area					
	0.6	05		82.5	4% Imperv	ious Area					
	_										
		Lengi		Slope	Velocity	Capacity	Description				
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)					
	7.0						Direct Entry,				

Subcatchment 10S: Proposed DA

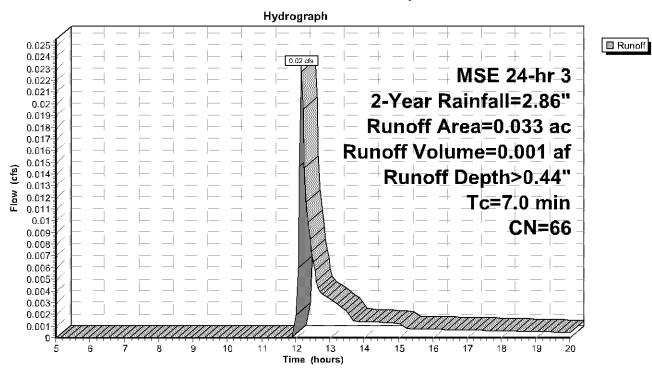
MSE 24-hr 3 2-Year Rainfall=2.86"

Prepared by Anderson Engineering of MN, LLC

HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Printed 9/27/2022 Page 10

Summary for Subcatchment 11S: Uncaptured


Runoff = 0.02 cfs @ 12.16 hrs, Volume= 0.001 af, Depth> 0.44"

Routed to Reach 10R: Pro Offsite

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 2-Year Rainfall=2.86"

_	Area	(ac)	CN	Desc	ription						
	0.	015	98	Pave	Paved parking, HSG A						
	0.	018	39	>75%	<u>ն Grass co</u>	ver, Good	, HSG A				
	0.	033	66	Weig	hted Aver	age					
0.018 54.55% Pervious Area											
	0.	015		45.4	5% Imperv	ious Area					
	_										
	Тс	Leng		Slope	Velocity	Capacity	Description				
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)					
	7.0						Direct Entry,				

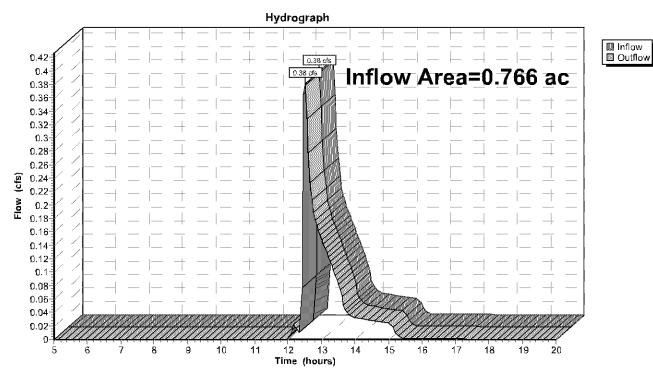
Subcatchment 11S: Uncaptured

MSE 24-hr 3 2-Year Rainfall=2.86"

Prepared by Anderson Engineering of MN, LLC HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC Printed 9/27/2022 Page 11

Summary for Reach 10R: Pro Offsite

[40] Hint: Not Described (Outflow=Inflow)


0.766 ac, 80.94% Impervious, Inflow Depth > 0.34" for 2-Year event Inflow Area =

Inflow 0.38 cfs @ 12.49 hrs, Volume= 0.022 af

Outflow 0.38 cfs @ 12.49 hrs, Volume= 0.022 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach 10R: Pro Offsite

MSE 24-hr 3 2-Year Rainfall=2.86"

Prepared by Anderson Engineering of MN, LLC

Printed 9/27/2022

HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Page 12

Summary for Pond 10P: Permeable Pavers

Inflow Area = 0.733 ac, 82.54% Impervious, Inflow Depth > 1.63" for 2-Year event

Inflow = 2.14 cfs @ 12.14 hrs, Volume= 0.099 af

Outflow = 0.41 cfs @ 12.49 hrs, Volume= 0.050 af, Atten= 81%, Lag= 20.6 min

Discarded = 0.04 cfs @ 11.05 hrs, Volume= 0.029 af Primary = 0.37 cfs @ 12.49 hrs, Volume= 0.020 af

Routed to Reach 10R: Pro Offsite

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 830.48' @ 12.49 hrs Surf.Area= 1,994 sf Storage= 2,377 cf

Plug-Flow detention time= 145.2 min calculated for 0.050 af (50% of inflow)

Center-of-Mass det. time= 83.2 min (861.3 - 778.2)

Volume	Invert	Avail.Storage	Storage Description			
#1	827.50'	3,190 cf	Custom Stage Data (Prismatic)Listed below (Recalc)			
		7,976 cf Overall x 40.0% Voids				
Elevation	Curf ∧	roa lna	a Stora Cum Stora			

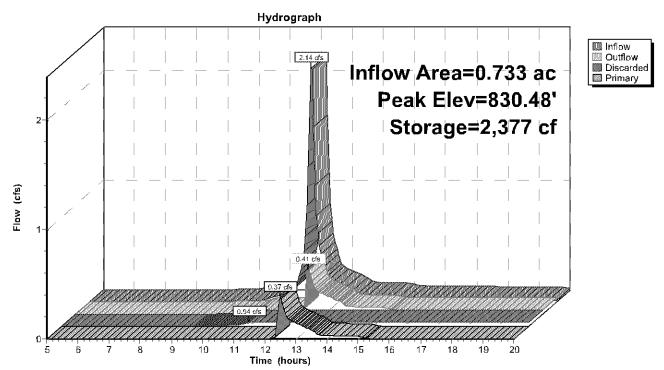
Elevation	Suri.Area	inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
827.50	1,994	0	0
831.50	1,994	7,976	7,976

Device	Routing	Invert	Outlet Devices
#1	Primary	827.50'	12.0" Round Culvert
	-		L= 22.0' RCP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 827.50' / 827.10' S= 0.0182 '/' Cc= 0.900
			n= 0.013 Concrete pipe, straight & clean, Flow Area= 0.79 sf
#2	Device 1	830.40'	5.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#3	Discarded	827.50	0.800 in/hr Exfiltration over Horizontal area

Discarded OutFlow Max=0.04 cfs @ 11.05 hrs HW=827.54' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=0.36 cfs @ 12.49 hrs HW=830.48' (Free Discharge)

1=Culvert (Passes 0.36 cfs of 5.25 cfs potential flow)


2=Sharp-Crested Rectangular Weir (Weir Controls 0.36 cfs @ 0.92 fps)

MSE 24-hr 3 2-Year Rainfall=2.86"

Prepared by Anderson Engineering of MN, LLC
HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Printed 9/27/2022 Page 13

Pond 10P: Permeable Pavers

MSE 24-hr 3 10-Year Rainfall=4.26"

Prepared by Anderson Engineering of MN, LLC
HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Printed 9/27/2022 Page 14

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment10S: Proposed DA Runoff Area=0.733 ac 82.54% Impervious Runoff Depth>2.86"

Tc=7.0 min CN=88 Runoff=3.66 cfs 0.175 af

Subcatchment11S: Uncaptured Runoff Area=0.033 ac 45.45% Impervious Runoff Depth>1.17"

Tc=7.0 min CN=66 Runoff=0.07 cfs 0.003 af

Reach 10R: Pro Offsite Inflow=3.31 cfs 0.092 af
Outflow=3.31 cfs 0.092 af

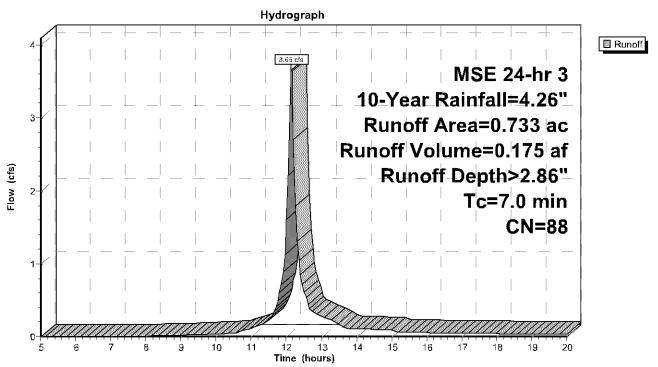
 Pond 10P: Permeable Pavers
 Peak Elev=830.74'
 Storage=2,588 cf
 Inflow=3.66 cfs
 0.175 af

 Discarded=0.04 cfs
 0.033 af
 Primary=3.26 cfs
 0.089 af
 Outflow=3.29 cfs
 0.122 af

Total Runoff Area = 0.766 ac Runoff Volume = 0.178 af Average Runoff Depth = 2.79" 19.06% Pervious = 0.146 ac 80.94% Impervious = 0.620 ac

MSE 24-hr 3 10-Year Rainfall=4.26"

Prepared by Anderson Engineering of MN, LLC HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC Printed 9/27/2022 Page 15


Summary for Subcatchment 10S: Proposed DA

Runoff 3.66 cfs @ 12.14 hrs, Volume= 0.175 af, Depth> 2.86" Routed to Pond 10P: Permeable Pavers

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 10-Year Rainfall=4.26"

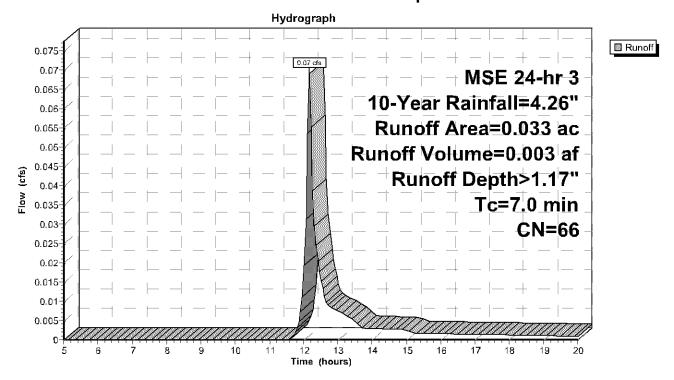
_	Area (ac)	CN	Desc	ription		
	0.5	559	98	Pave	ed parking,	HSG A	
	0.1	128	39	>75%	√ Grass co	over, Good	I, HSG A
*	0.0	046	98	Perm	neable Pav	/ers	
	0.7	733	88	Weig	hted Aver	age	
	0.128 17.46% Pervious Area					us Area	
	0.605 82.54% Impervious Area				4% Imperv	rious Area	
	_						
		Leng		Slope	Velocity	Capacity	Description
_	(min)	(fe∈	et)	(ft/ft)	(ft/sec)	(cfs)	
	7.0						Direct Entry,

Subcatchment 10S: Proposed DA

MSE 24-hr 3 10-Year Rainfall=4.26"

Prepared by Anderson Engineering of MN, LLC HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC Printed 9/27/2022 Page 16

Summary for Subcatchment 11S: Uncaptured


0.003 af, Depth> 1.17" Runoff 0.07 cfs @ 12.15 hrs, Volume=

Routed to Reach 10R: Pro Offsite

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 10-Year Rainfall=4.26"

_	Area	(ac)	CN	Desc	ription		
_	0.	015	98	Pave	ed parking,	HSG A	
_	0.	018	39	>75%	<u>ն Grass co</u>	ver, Good	d, HSG A
	0.	033	66	Weig	hted Aver	age	
	0.	018		54.5	5% Pervio	us Area	
	0.	015		45.4	5% Imperv	ious Area	
	_			51	37.1.2	0 1	
	Tc	Lengt		Slope	Velocity	Capacity	Description
-	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	7 N						Direct Entry

Subcatchment 11S: Uncaptured

MSE 24-hr 3 10-Year Rainfall=4.26"

Prepared by Anderson Engineering of MN, LLC

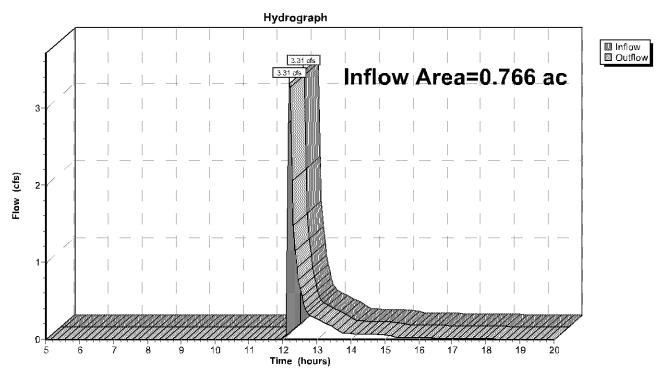
Printed 9/27/2022

Page 17

HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Summary for Reach 10R: Pro Offsite

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 0.766 ac, 80.94% Impervious, Inflow Depth > 1.44" for 10-Year event

Inflow = 3.31 cfs @ 12.19 hrs, Volume= 0.092 af

Outflow = 3.31 cfs @ 12.19 hrs, Volume= 0.092 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach 10R: Pro Offsite

#2

#3

Device 1

Discarded

MSE 24-hr 3 10-Year Rainfall=4.26"

Prepared by Anderson Engineering of MN, LLC

Printed 9/27/2022

HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Page 18

Summary for Pond 10P: Permeable Pavers

Inflow Area = 0.733 ac, 82.54% Impervious, Inflow Depth > 2.86" for 10-Year event

Inflow = 3.66 cfs @ 12.14 hrs, Volume= 0.175 af

Outflow = 3.29 cfs @ 12.19 hrs, Volume= 0.122 af, Atten= 10%, Lag= 2.9 min

Discarded = 0.04 cfs @ 10.25 hrs, Volume= 0.033 af Primary = 3.26 cfs @ 12.19 hrs, Volume= 0.089 af

Routed to Reach 10R: Pro Offsite

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 830.74' @ 12.19 hrs Surf.Area= 1,994 sf Storage= 2,588 cf

Plug-Flow detention time= 82.0 min calculated for 0.122 af (70% of inflow)

Center-of-Mass det. time= 29.3 min (797.9 - 768.6)

<u>Volume</u>	lnv	ert Avail.s	Storage	Storage	Description	
#1	827.	50' 3	3,190 cf		Stage Data (Pris Overall x 40.0%	smatic)Listed below (Recalc) Voids
Elevation (fee		Surf.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
827.5	50	1,994		0	0	
831.5	50	1,994		7,976	7,976	
Device	Routing	Inve	ert Outl	et Devices	6	
#1	Primary	827.5	L= 2 Inlet	/ Outlet In	P, mitered to confo nvert= 827.50' / 82	orm to fill, Ke= 0.700 27.10' S= 0.0182 '/' Cc= 0.900 nt & clean, Flow Area= 0.79 sf

827.50' 0.800 in/hr Exfiltration over Horizontal area

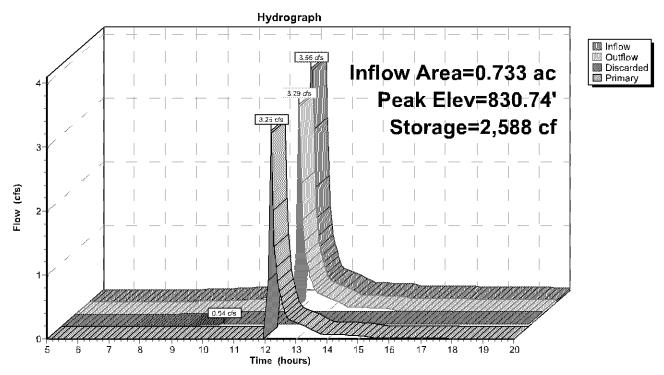
830.40' 5.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Discarded OutFlow Max=0.04 cfs @ 10.25 hrs HW=827.54' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=3.11 cfs @ 12.19 hrs HW=830.73' (Free Discharge)

-1=Culvert (Passes 3.11 cfs of 5.52 cfs potential flow)

2=Sharp-Crested Rectangular Weir (Weir Controls 3.11 cfs @ 1.89 fps)


MSE 24-hr 3 10-Year Rainfall=4.26"

Printed 9/27/2022

Prepared by Anderson Engineering of MN, LLC
HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Page 19

Pond 10P: Permeable Pavers

MSE 24-hr 3 100-Year Rainfall=7.32"

Prepared by Anderson Engineering of MN, LLC HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Page 20

Printed 9/27/2022

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment10S: Proposed DA Runoff Area=0.733 ac 82.54% Impervious Runoff Depth>5.71"

Tc=7.0 min CN=88 Runoff=6.98 cfs 0.349 af

Subcatchment11S: Uncaptured Runoff Area=0.033 ac 45.45% Impervious Runoff Depth>3.30"

Tc=7.0 min CN=66 Runoff=0.20 cfs 0.009 af

Reach 10R: Pro Offsite Inflow=6.08 cfs 0.265 af
Outflow=6.08 cfs 0.265 af

 Pond 10P: Permeable Pavers
 Peak Elev=831.12'
 Storage=2,889 cf
 Inflow=6.98 cfs
 0.349 af

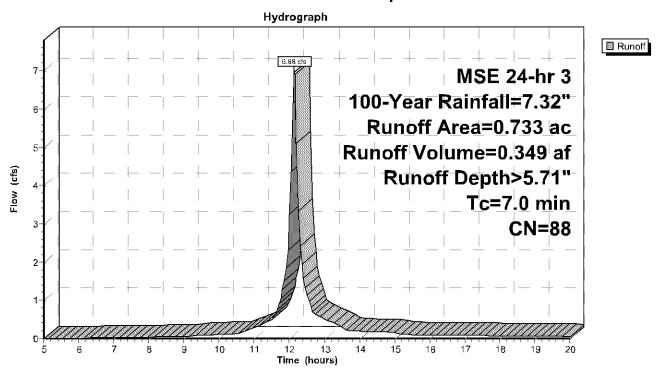
 Discarded=0.04 cfs
 0.040 af
 Primary=6.00 cfs
 0.256 af
 Outflow=6.04 cfs
 0.296 af

Total Runoff Area = 0.766 ac Runoff Volume = 0.358 af Average Runoff Depth = 5.61" 19.06% Pervious = 0.146 ac 80.94% Impervious = 0.620 ac

MSE 24-hr 3 100-Year Rainfall=7.32"

Prepared by Anderson Engineering of MN, LLC HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC Printed 9/27/2022

Page 21


Summary for Subcatchment 10S: Proposed DA

Runoff 6.98 cfs @ 12.14 hrs, Volume= 0.349 af, Depth> 5.71" Routed to Pond 10P: Permeable Pavers

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100-Year Rainfall=7.32"

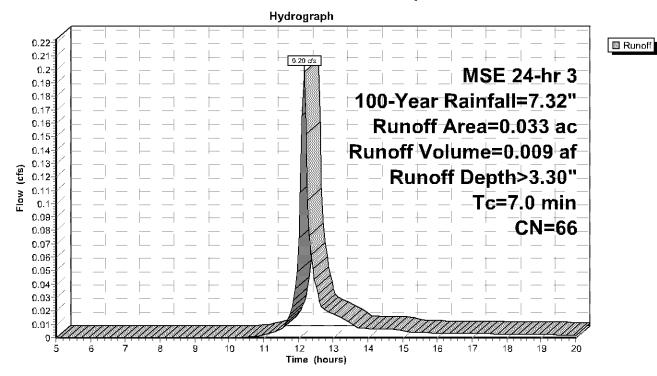
_	Area (ad	c) C	N Des	cription		
	0.55	9 9	8 Pav	ed parking	, HSG A	
	0.12	8 3	9 >75	% Grass co	over, Good	J, HSG A
*	0.04	6 9	8 Peri	meable Par	vers	
	0.73	3 8	8 Wei	ghted Aver	age	
	0.128 17.46% Pervious Area					
	0.60	0.605 82.54% Impervious Area				
	_	_				
		ength	Slope	,	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.0					Direct Entry,

Subcatchment 10S: Proposed DA

MSE 24-hr 3 100-Year Rainfall=7.32"

Prepared by Anderson Engineering of MN, LLC HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC Printed 9/27/2022 Page 22

Summary for Subcatchment 11S: Uncaptured


Runoff 0.20 cfs @ 12.15 hrs, Volume= 0.009 af, Depth> 3.30"

Routed to Reach 10R: Pro Offsite

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100-Year Rainfall=7.32"

Area	(ac)	CN	Desc	ription		
0	.015	98	Pave	d parking,	HSG A	
0	.018	39	>75%	6 Grass co	over, Good	, HSG A
0.	.033	66	Weig	hted Aver	age	
0	.018		54.5	5% Pervio	us Area	
0	.015		45.4	5% Imperv	ious Area	
Tc	Lengt	th S	Slope	Velocity	Capacity	Description
(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
7.0						Direct Entry,

Subcatchment 11S: Uncaptured

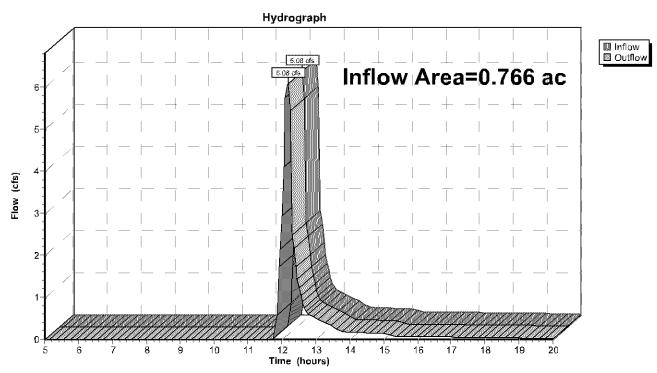
MSE 24-hr 3 100-Year Rainfall=7.32"

Prepared by Anderson Engineering of MN, LLC HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC Printed 9/27/2022

Page 23

Summary for Reach 10R: Pro Offsite

[40] Hint: Not Described (Outflow=Inflow)


0.766 ac, 80.94% Impervious, Inflow Depth > 4.15" for 100-Year event Inflow Area =

Inflow 6.08 cfs @ 12.17 hrs, Volume= 0.265 af

6.08 cfs @ 12.17 hrs, Volume= Outflow 0.265 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach 10R: Pro Offsite

MSE 24-hr 3 100-Year Rainfall=7.32"

Prepared by Anderson Engineering of MN, LLC

Printed 9/27/2022

HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Page 24

Summary for Pond 10P: Permeable Pavers

Inflow Area = 0.733 ac, 82.54% Impervious, Inflow Depth > 5.71" for 100-Year event

Inflow = 6.98 cfs @ 12.14 hrs, Volume= 0.349 af

Outflow = 6.04 cfs @ 12.18 hrs, Volume= 0.296 af, Atten= 13%, Lag= 2.2 min

Discarded = 0.04 cfs @ 8.45 hrs, Volume= 0.040 af Primary = 6.00 cfs @ 12.18 hrs, Volume= 0.256 af

Routed to Reach 10R: Pro Offsite

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 831.12' @ 12.18 hrs Surf.Area= 1,994 sf Storage= 2,889 cf

Plug-Flow detention time= 56.9 min calculated for 0.296 af (85% of inflow)

Center-of-Mass det. time= 17.9 min (774.5 - 756.6)

Volume	Invert	Avail.Storage	e Storage Description		
#1	827.50'	3,190 cf			
	7,976 cf Overall x 40.0% Voids				
- 1	Cf	A I	Our Char		
Elevation	Surf./	Area in	nc.Store Cum.Store		
(feet)	(s	q-ft) (cub	bic-feet) (cubic-feet)		

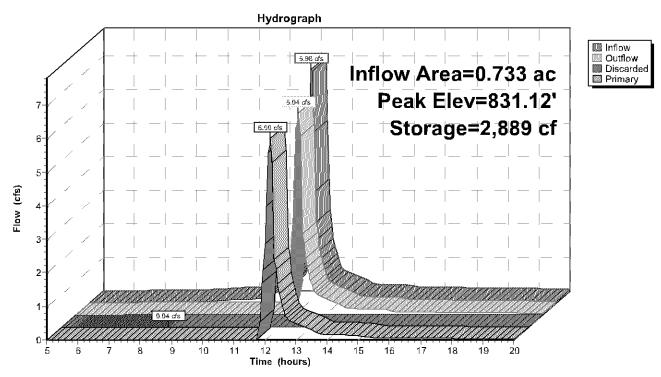
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
827.50	1,994	0	0
831.50	1,994	7,976	7,976

Device	Routing	Invert	Outlet Devices
#1	Primary	827.50'	12.0" Round Culvert
	-		L= 22.0' RCP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 827.50' / 827.10' S= 0.0182 '/' Cc= 0.900
			n= 0.013 Concrete pipe, straight & clean, Flow Area= 0.79 sf
#2	Device 1	830.40'	5.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#3	Discarded	827.50	0.800 in/hr Exfiltration over Horizontal area

Discarded OutFlow Max=0.04 cfs @ 8.45 hrs HW=827.54' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=5.86 cfs @ 12.18 hrs HW=831.09' (Free Discharge)

1=Culvert (Inlet Controls 5.86 cfs @ 7.46 fps)


2=Sharp-Crested Rectangular Weir (Passes 5.86 cfs of 9.04 cfs potential flow)

MSE 24-hr 3 100-Year Rainfall=7.32"

Prepared by Anderson Engineering of MN, LLC
HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Printed 9/27/2022 Page 25

Pond 10P: Permeable Pavers

MSE 24-hr 3 100-Year Rainfall=7.32"

Prepared by Anderson Engineering of MN, LLC
HydroCAD® 10.10-7a s/n 00837 © 2021 HydroCAD Software Solutions LLC

Printed 9/27/2022

Page 1

Stage-Area-Storage for Pond 10P: Permeable Pavers

Classadian	Sf	11	6 4
Elevation (feet)	Surface (sq-ft)	Horizontal (sq-ft)	Storage (cubic-feet)
827.50	1,994	1,994	0
827.60	1,994	1,994	80
827.70	1,994	1,994	160
827.80	1,994	1,994	239
827.90	1,994	1,994	319
828.00	1,994	1,994	399
828.10	1,994	1,994	479
828.20	1,994	1,994	558
828.30	1,994	1,994	638
828.40	1,994	1,994	718
828.50	1,994	1,994	798
828.60	1,994	1,994	877
828.70	1,994	1,994	957
828.80	1,994	1,994	1,037
828.90	1,994	1,994	1,117
829.00	1,994	1,994	1,196
829.10	1,994	1,994	1,276
829.20	1,994	1,994	1,356
829.30	1,994	1,994	1,436
829.40	1,994	1,994	1,515
829.50	1,994	1,994	1,595
829.60	1,994	1,994	1,675
829.70	1,994	1,994	1,755
829.80	1,994	1,994	1,834
829.90	1,994	1,994	1,914
830.00	1,994	1,994	1,994
830.10	1,994	1,994	2,074
830.20	1,994	1,994	2,154
830.30	1,994	1,994	2,233
830.40	1,994	1,994	2,313
830.50	1,994	1,994	2,393
830.60	1,994	1,994	2,473
830.70	1,994	1,994	2,552
830.80	1,994	1,994	2,632
830.90	1,994	1,994	2,712
831.00	1,994	1,994	2,792
831.10	1,994	1,994	2,871
831.20 831.30	1,994 1,994	1,994 1,994	2,951
831.40	1,994 1,994	1,994 1,994	3,031 3,111
831.50	1,994	1,994	3,190
00.100	1,354	1,354	3,130

Project Information

D - MIDS RESULTS

Calculator Version: Version 4: July 2020

Project Name: Gyropolis

User Name / Company Name: Anderson Engineering

Date: 9-27-2022

Project Description:

Construction Permit?: Yes

Site Information

Retention Requirement (inches): 1.1
Site's Zip Code: 55431
Annual Rainfall (inches): 31.3
Phosphorus EMC (mg/l): 0.3
TSS EMC (mg/l): 54.5

Total Site Area

Land Cover	A Soils (acres)	B Soils (acres)	C Soils (acres)	D Soils (acres)	Total (acres)
Forest/Open Space - Undisturbed, protected forest/open space or reforested land					0
Managed Turf - disturbed, graded for yards or other turf to be mowed/managed	0.192				0.192
		lr	0.574		
			Total A	rea (acres)	0.766

Site Areas Routed to BMPs

Land Cover	A Spils (acres)	B Soils (acres)	C Soils (acres)	D Soils (acres)	Total (acres)
Forest/Open Space - Undisturbed, protected forest/open space or reforested land					0
Managed Turf - disturbed, graded for yards or other turf to be mowed/managed	0.174				0.174
		lr	0.559		
			Total A	rea (acres)	0.733

Summary Information

Performance Goal Requirement

Performance goal volume retention requirement: Volume removed by BMPs towards performance goal:	2292 22 3 2	ft3 ft³
Percent volume removed towards performance goal	97	%

Annual Volume and Pollutant Load Reductions		
Post development annual runoff volume	1.3477	acre-ft
Annual runoff volume removed by BMPs:	1.2355	acre-ft
Percent annual runoff volume removed:	92	%
Post development annual particulate P load:	0.6048	lbs
Annual particulate P removed by BMPs:	0.554	lbs
Post development annual dissolved P load:	0.495	lbs
Annual dissolved P removed by BMPs:	0.454	lbs
Total P removed by BMPs	1.008	lbs
Percent annual total phosphorus removed:	92	%
Post development annual TSS load:	199.8	lbs
Annual TSS removed by BMPs:	183.2	lbs
Percent annual TSS removed:	92	%

BMP Summary

Performance Goal Summary

BMP Name	BMP Volume Capacity (ft3)	Volume Recieved (ft3)	Volume Retained (ft3)	Volume Outflow (ft3)	Percent Retained (%)
Permeable Pavers	2313	2232	2232	0	100

Annual Volume Summary

BMP Name	Volume From Direct Watershed (acre-ft)	Volume From Upstream BMPs (acre-ft)	Volume Retained (acre-ft)	Volume outflow (acre-ft)	Percent Retained (%)
Permeable Pavers	1.3079	0	1.2355	0.0724	94

Particulate Phosphorus Summary

BMP Name	Load From Direct Watershed (lbs)	Load From Upstream BMPs (lbs)	Load Retained (lbs)	Outflow Load (lbs)	Percent Retained (%)
Permeable Pavers	0.587	0	0.5545	0.0325	94

Dissolved Phosphorus Summary

BMP Name	Load From Direct Watershed (lbs)	Load From Upstream BMPs (lbs)	Load Retained (lbs)	Outflow Load (lbs)	Percent Retained (%)
Permeable Pavers	0.4803	0	0.4537	0.0266	94

Total Phosphorus Summary

BMP Name	Load From Direct Watershed (lbs)	Load From Upstream BMPs (lbs)	Load Retained (lbs)	Outflow Load (lbs)	Percent Retained (%)
Permeable Pavers	1.0673	0	1.0082	0.0591	94

TSS Summary

BMP Name	Load From Direct Watershed (lbs)	Load From Upstream BMPs (lbs)	Load Retained (lbs)	Outflow Load (lbs)	Percent Retained (%)
Permeable Pavers	193.88	0	183.15	10.73	94

BMP Schematic

PL202200183

Permeable Pavers	

E - STORM SEWER SIZING WORKSHEET

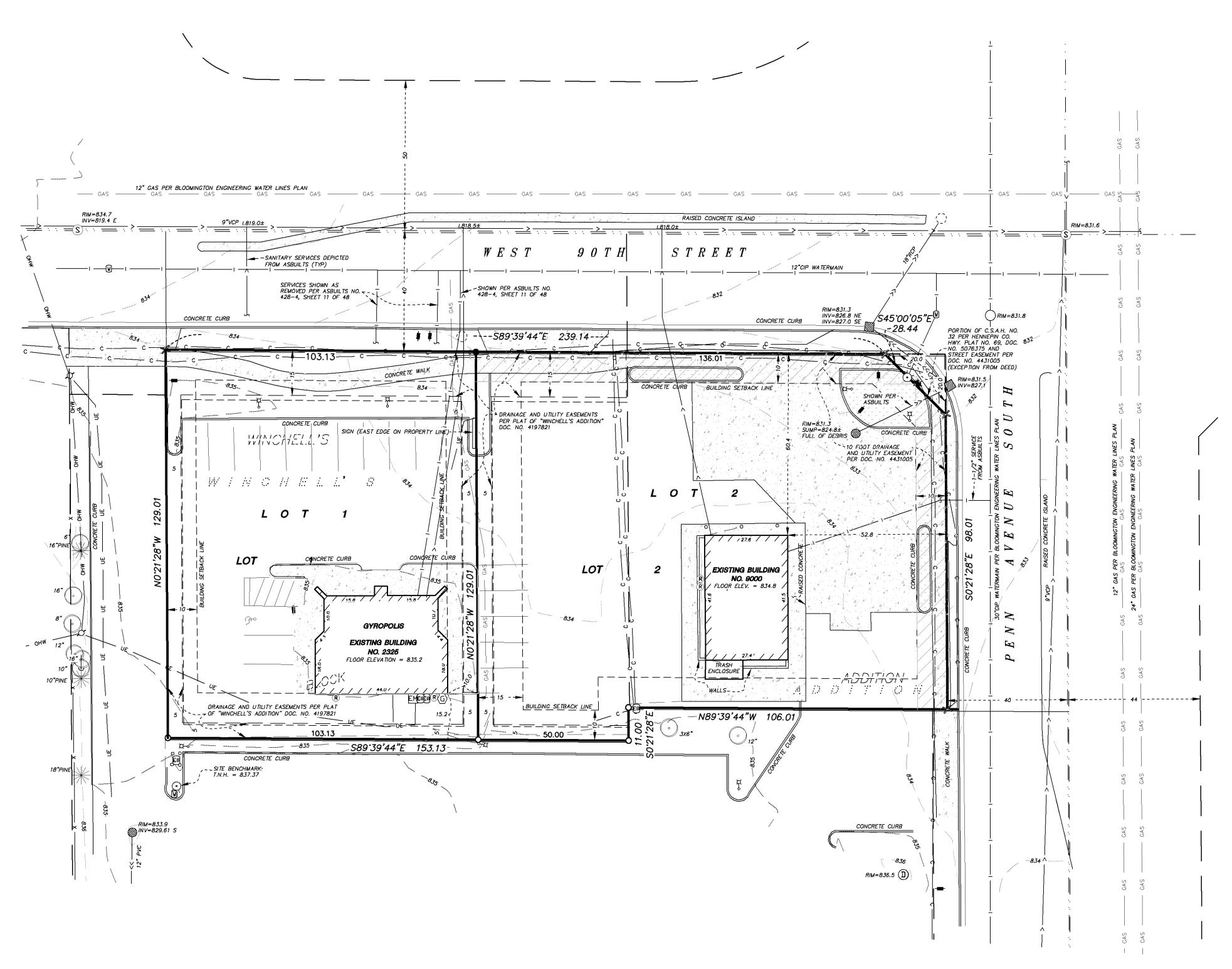
GYROPOLIS

STORM SIZING WORK SHEET DATE: 9/27/2022

AE PROJ#

16318

"C" Values 0.9 0.3


<u>Possible</u> Project Location Regions Minnesota 3,4

Designed For Storm (yr) 3 10

DESIGN CHECKS

					Flow Calculation											Pipe Sizin	g		Pipe Properties			Cover			Pipe Capacity		Pip	e Cover												
		Pipe	Run		Per. Area	Imp. Area	Total Area	a Area	Cumm. Area	Time of Canc (T _c)	Intensity	Q = cIA	Q cumm Q10	Pipe size	I slope I k I Pipe		I slope k		Pipe		Pipe		Pipe		Pipe		Pipe		Pipe		Length of	Invert Upstream	Invert Downstream	Minimu m Cover	Depth Upstream	Depth Downstream	Pipe inc Flow as Perc. of	Flow Capacity	Pipe Cover (ft)	Cover Condition?
	truc.	Rîm	Struc.	Rim	(sf)	(sf)	(sf)	(acres)	"c" value	(min.)	I (in/24 hr)	(cfs)	(cfs)	(în.)	(material)	Slope (%)	Manning's	Capacity (cfs)	Velocity (fps)	Pipe Run (ft)	Upstream	(ft)	(ft)	(ft)	(ft)	Capacity (%)	Conditions													
CBM	Н 3	833.00	СВ	833.80	543	4,891	5,434	0.12	0.84	5.00	6.07	0.64	1.04	12	HDPE	2.10	42.1	6.10	4,98	52	827.50	826.41	4.40	5.50	7.39	17.3%	6000	4.40	GOOD											
CBM	1 4	834.10	СВМН .	833.00	136	773	909	0.02	0.81	5.00	6.07	0.10	0.40	12	HDPE	1.10	42.1	4.42	2.97	65	828.60	827.89	4.02	5.50	5.12	9.1%	GOOD	4.02	GOOD											
CBM	1 5	834.40	СВМН	834.10	0	685	685	0.02	0.90	5.00	6.07	0.09	0.30	12	HDPE	0.90	42.1	3.99	2.50	45	829.30	828.90	4.00	5.10	5.21	7,5%	GOOD	4.00	5000 ////											
СВ	6	834.00	СВМН	834.40	88	1,673	1,761	0.04	0.87	5.00	6.07	0.21	0.21	12	HDPE	1.00	42.1	4.21	2/23	27	829.70	829.43	3.20	4.30	4.97	5.1%	6000	8.20	GOOD///											
СВМ	4 8	834.00	свмн	833.10	261	4,959	5,220	0.12	0.87	5.00	6.07	0.63	0.63	12	HDPE	2.30	42.1	6.39	4,44	107	827.50	825.04	5.40	6.50	8.06	9,9%	Goob	5.40	GOOD											
СВ	9	832.50	СВМН	833.10	532	4,789	5,321	0.12	0.84	5.00	6.07	0.62	0.62	12	HDPE	3.00	42.1	7.29	4.80	40	827.50	826.30	3.90	5.00	6.80	8.5%	6000	8.90	GÖÖÜ											
							0	۵.0۵	-	5.00	6.07	0	۵.0۵				#DIV/0!					0.00		0.00	0.00			#N/A	#N/A											
							0	0.00	-	5.00	6.07	0	0.00				#DIV/0!					0.00		0.00	0.00			#N/A	#N/A											

F - CIVIL PLANS

EXISTING CONDITIONS SURVEY FOR: HTG ARCHITECTS

SITE ADDRESSES:

2325 90th Street West, (Lot 1)

9000 Penn Avenue South, (Lot 2)

Bloomington, Minnesota.

LEGAL DESCRIPTION:

Lot 1 Block 1, WINCHELL'S ADDITION, Hennepin County County, Minnesota.

Lot 2 Block 1, WINCHELL'S ADDITION, Except Road, Hennepin County, Minnesota.

SURVEY NOTES:

- 1. The horizontal datum and bearings are based on the Hennepin County Coordinate System NAD83(2011).
- 2. The vertical datum is NAVD 88. The site benchmark is the top nut of the hydrant located near the southwest corner of Lot 1 (depicted hereon). Elevation = 837.37 feet.
- 3. The area of Lot 1 is 13,304 square feet or 0.3054 acres.

The area of Lot 2 is 18,958 square feet or 0.4352 acres. The area of Lot 2, less the lands per HENNEPIN COUNTY HIGHWAY RIGHT—OF—WAY PLAT NO. 69, is 18,758 square feet or 0.4306 acres.

- 4. The location and extent of underground utilities, if shown, are based upon existing drawings provided by the utility companies, above ground evidence and Gopher State One Call markings per ticket number 220060272 and 220060275. Exclusive of excavation, there is no guarantee as to the accuracy or the completeness of this information. The size and location should be considered approximate. Additional underground utilities may be present. Verification of the existence and location of all utilities should be obtained from the utility owners prior to any planning or design. In accordance with State Statute, the location of utilities shall be confirmed prior to any demolition or construction.
- 5. The tree information shown hereon was collected during the field survey by non-forestry trained Anderson Engineering of Minnesota survey personnel. Tree sizes are estimates and locations are accurate to plus or minus three feet.
- 6. No title work was provided for the preparation of this survey to verify the legal description or the existence of any easements or encumbrances.
- 7. At the time of this survey, portions of the subject property were covered in significant amounts of snowfall, snow piles and ice. Some catch basins were observed to be full of ice and snow. Some improvements may not be depicted.
- 8. According to the City of Bloomington, the subject property is zoned B-4 (Neighborhood Commercial Center) and has the building setback requirements listed below. It is recommended that the property owner obtain a zoning letter from the City to verify all conditions that affect the property through the city zoning ordinance. This survey does not purport to describe all conditions contained in said ordinance.

BUILDING SETBACKS

Side = 10 feet = 15 feet

LEGEND

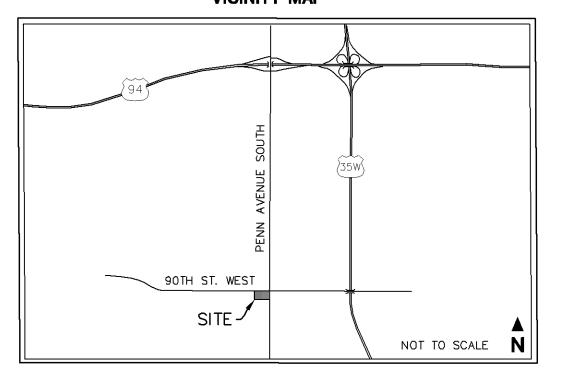
W WATER VALVE

FOUND IRON MONUMENT

O SET 1/2"X14" IRON PIPE

SCRIBED "X" IN SURFACE

MARKÉD L.S. NO. 43501


CATCH BASIN CONIFEROUS TREE ELECTRIC BOX (·) DECIDUOUS TREE EM ELECTRIC METER G GAS METER —— c —— COMMUNICATION GUARD POST —×——×— FENCE & HANDICAP PARKING ---- GAS MAIN TYDRANT LIGHT POLE ----> SANITARY SEWER MANHOLE ---- >> ---- STORM SEWER (MANHOLE NOT FIELD VERIFIED ----- UNDERGROUND ELECTRIC POWER POLE ---- WATER MAIN - POWER POLE ANCHOR BITUMINOUS SURFACE ® ROOF DRAIN CONCRETE SURFACE S SANITARY MANHOLE * SEMAPHORE LANDSCAPE ROCK SIGN LANDSCAPE WOODCHIPS

1 DEPRESSION CONTOUR

CIP CAST IRON PIPE

VCP VITRIFIED CLAY PIPE

VICINITY MAP

www.htg-architects.com

9300 Hennepin Town Road Minneapolis, MN 55347 Tel: 952.278.8880 Fax: 952.278.8822

PROJECT

ADDITION/REMODELING

2325 W 90TH ST BLOOMINGTON, MINNESOTA

ISSUED S	ET	
REVISION	5	
DATE <u>9/27/22</u>	No. _1	CITY SUBMITTAL
	·	
	<u> </u>	

I HEREBY CERTIFY THAT THIS SURVEY WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION, AND THAT I AM A DULY LICENSED LAND SURVEYOR UNDER THE LAWS OF THE STATE OF MINNESOTA.

DAVID ANDERSON, LS

1/28/22 43501 MN. REG. NO.

13605 1st Avenue N. #100 Plymouth, MN 55441 | ae-mn.com **P** 763.412.4000 | **F** 763.412.4090 Anderson Engineering of Minnesota, LLC

EXISTING CONDITIONS SURVEY

DRAWN BY: BF CHECKED BY: BF

COPYRIGHT © BY HTG ARCHITECTS

0 20' 40'

KEY NOTES

- 1 REMOVE EXISTING CONCRETE CURB AND GUTTER (TYP.).
- 2 REMOVE EXISTING CONCRETE APRON.
 RESTORE WEST 90TH ST PAVEMENT,
 CONCRETE CURB AND GUTTER, AND
 BOULEVARD PER CITY OF BLOOMINGTON
 STANDARDS.
- REMOVE EXISTING CONCRETE WALK PER LIMITS SHOWN.
- REMOVE EXISTING GAS STATION STRUCTURE IN ITS ENTIRETY.
- REMOVE EXISTING PAVEMENT WITHIN CONSTRUCTION LIMITS.
- (6) CONTRACTOR TO COORDINATE RELOCATION OF EXISTING UNDERGROUND SERVICE WITH RESPECTIVE UTILITY COMPANY

- (7) ABANDON WATER SERVICE AT MAIN PER CITY STANDARDS
- (8) REMOVE & REPLACE IN-KIND FOR UTILITY CONNECTIONS. PROVIDE STAGE APPROPRIATE TRAFFIC CONTROL MEASURES PER MUTCD
- (9) REMOVE EXISTING WATER SERVICE
- REMOVE EXISTING SANITARY SEWER SERVICE TO ROW LINE
- REMOVE EXISTING STORM SEWER AND MANHOLE AS SHOWN

GENERAL NOTES

- UTILITIES SHOWN HERE ARE FOR INFORMATIONAL USE ONLY AND ARE NOT GUARANTEED IN THEIR ACCURACY. VERIFY WORK. NOTIFY ENGINEER OF ANY/ALL DISCREPANCIES IMMEDIATELY.
- 2. CONTRACTOR SHALL HIRE PRIVATE UTILITY
 LOCATOR AS NECESSARY TO VERIFY
 UNDERGROUND UTILITIES. UTILITIES SHOWN ON
 PLANS MAY VARY FROM EXISTING CONDITIONS, AND
 CONTRACTOR IS RESPONSIBLE FOR ANY DAMAGE
 CAUSED TO UTILITY LINES SHOWN, NOT SHOWN, OR
 SHOWN INCORRECTLY.
- 3. UTILITIES MUST BE LOCATED PRIOR TO EXCAVATION OR GRADING ON ANY SITE. CALL GOPHER SATE ONE CALL AT 1-800-252-1166 AS SOON AS POSSIBLE TO SCHEDULE UTILITY LOCATIONS FOR THIS SITE.
- 4. A MINIMUM OF 24-HOUR NOTICE IS REQUIRED WHEN SCHEDULING INSPECTIONS. PLEASE FORWARD THIS INFORMATION TO ANY AND ALL AFFECTED SUB-CONTRACTORS FOR THIS PROJECT.

LEGEND

PROPERTY LIMITS

EXISTING WATERMAIN

EXISTING SANITARY SEWER

EXISTING STORM SEWER

EXISTING FENCE

EXISTING GAS MAIN

EXISTING OVERHEAD WIRES

EXISTING TELEPHONE

EXISTING UNDERGROUND ELECTRIC

EXISTING HYDRANT AND GV

EXISTING SANITARY MANHOLE

EXISTING STORM SEWER INLET

REMOVE EXISTING BUILDING
STRUCTURE

REMOVE EXISTING APRON

REMOVE EXISTING CONCRETE WALK

REMOVE EXISTING CONCRETE C&G

REMOVE TREE

HHG architects

WWW.htg-architects.com

Minneapolis Tampa Bismarck

9300 Hennepin Town Road Minneapolis, MN 55347 Tel: 952.278.8880 Fax: 952.278.8822

PROJECT

GYROPOLIS

ADDITION/REMODELING

2325 W 90TH ST BLOOMINGTON, MINNESOTA

ISSUED S		
REVISION	NS .	
DATE 9/27/22	NO. _1	CITY SUBMITTAL

I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION, AND THAT I AM A DULY LICENSED CIVIL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA

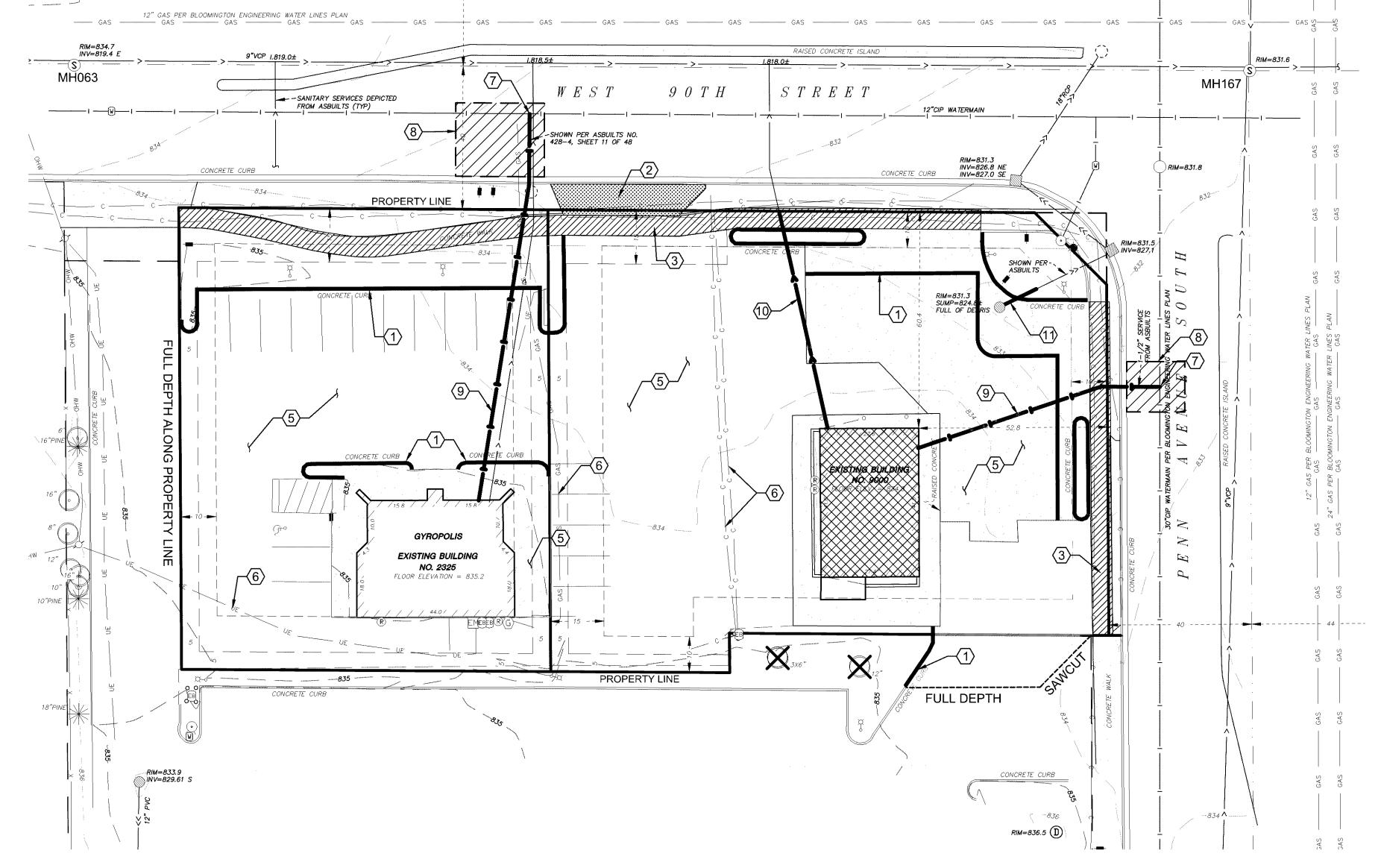
NOT FOR CONSTRUCTION

Brian Field, PE

56013

REG NO

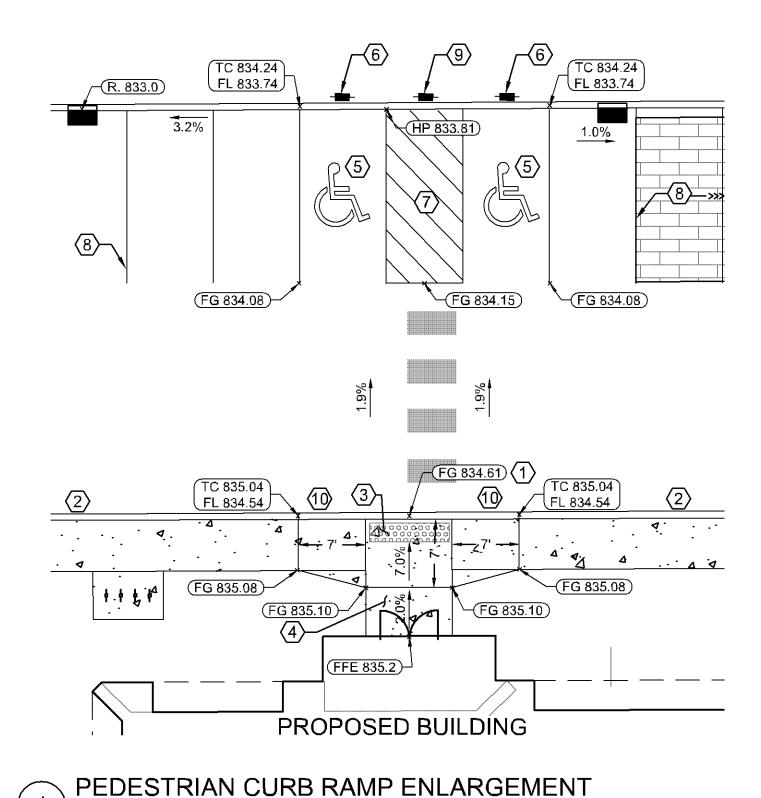
13605 1st Avenue N. #100 Plymouth, MN 55441 | **ae-mn**.com **P** 763.412.4000 | **F** 763.412.4090 Anderson Engineering of Minnesota, LLC

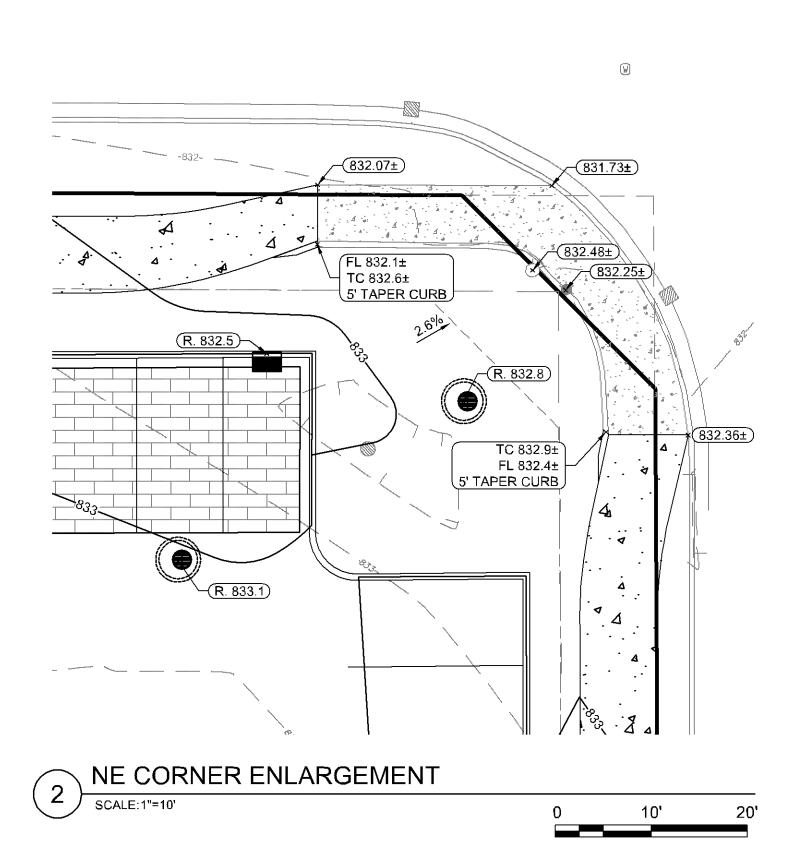

DEMOLITION PLAN

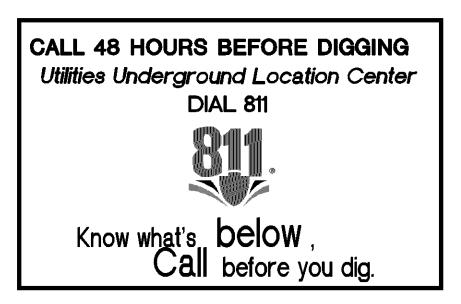
DRAWN BY: BF

CHECKED BY: BF

C2


16318 (AEMN)
COPYRIGHT © BY HTG ARCHITECTS




CALL 48 HOURS BEFORE DIGGING
Utilities Underground Location Center
DIAL 811

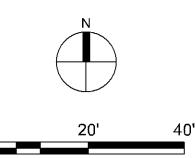
DIAL 811

Know what's below, Call before you dig.

SCALE:1"=10'

KEY NOTES

- (1) 0" CURB HEIGHT FOR FULL LENGTH OF CONCRETE WALK.
- (2) FULL CURB HEIGHT
- DETECTABLE WARNING MAY BE PART OF 4'X4' LANDING AREA IF IT IS NOT FEASIBLE TO CONSTRUCT THE LANDING OUTSIDE OF THE DETECTABLE WARNING AREA.
- 4' BY 4' MIN. LANDING WITH MAX. 2.0% SLOPE IN ALL DIRECTIONS
- WHITE REFLECTIVE PAINT RECTANGLE CENTERED AROUND ACCESSIBILITY PARKING SYMBOL. LINE TO BE 3 INCHES WIDE, OVER A WIDTH OF 36 INCHES AND HEIGHT OF 41 INCHES PER 2009 MUTCD CODE FIGURE 3B.20.
- (6) HANDICAP STALL SIGN TO COMPLY WITH 2020 MN ACCESSIBILITY CODE 502.7
- (7) 4" PAINTED DIAGONAL LINES 45° 3' CENTER TO CENTER.
- (8) 4" PAINTED PARKING STALL LINES.
- 9 NO PARKING SIGN. MUTCD R8-3. INSTALL MIN. OF 60" TO MAX. OF 66" HIGH MEASURED FROM HEAD OF ACCESS AISLE PAVEMENT ELEVATION TO BOTTOM OF SIGN PER 2020 MN ACCESSIBILITY CODE 502.4.4.
- NARIABLE HEIGHT CURB


CONTRACTOR NOTES

- PROPOSED SPOT ELEVATIONS ARE TO TOP OF FINISHED SURFACE UNLESS OTHERWISE NOTED IN LEGEND.
- 2. ALL CONSTRUCTION OF HANDICAP STALLS, ROUTES, & CURB RAMPS TO COMPLY WITH THE 2020 MN ACCESSIBILITY CODE.
- 3. CONTRACTION JOINTS SHALL BE CONSTRUCTION ALONG ALL GRADE BREAKS. ALL GRADE BREAKS SHALL BE PERPENDICULAR TO THE PATH OF TRAVEL.
- 4. TO ENSURE RAMPS & LANDINGS ARE PROPERLY CONSTRUCTED, LANDINGS MAY BE CAST SEPARATELY.
- 5. ALL SLOPES ARE ABSOLUTE, RATHER THAN RELATIVE TO SIDEWALK/ROADWAY GRADES.
- 6. TOP OF CURB SHALL MATCH PROPOSED ADJACENT WALK GRADE.
- 7. FOUR FOOT MIN WIDTH OF DETECTABLE WARNING IS REQUIRED FOR ALL RAMPS. DETECTABLE WARNINGS SHALL CONTINUOUSLY EXTEND FOR A MIN. OF 24" IN THE PATH OF TRAVEL.

SPOT ELEVATION KEY

±	EXISTING GRADE
HP	HIGH POINT ELEVATION
TC	TOP OF CURB ELEVATION
R.	RIM ELEVATION

INVERT ELEVATION

LEGEND

	PROPERTY LIMITS
966 — —	EXISTING MINOR CONTOUR
965 — —	EXISTING MAJOR CONTOUR
966	PROPOSED MINOR CONTOUR
965 ———	PROPOSED MAJOR CONTOUR
× 959.4	EXISTING SPOT ELEVATION
\Longrightarrow	DRAINAGE ARROW
	PROPOSED CONCRETE C&G

WWW.htg-architects.com

Minneapolis Tampa Bismarck

9300 Hennepin Town Road Minneapolis, MN 55347 Tel: 952.278.8880 Fax: 952.278.8822

PROJECT

GYROPOLIS

ADDITION/REMODELING

2325 W 90TH ST BLOOMINGTON, MINNESOTA

REVISION	IS	
DATE <u>9/27/22</u>	N0. <u>1</u>	CITY SUBMITTAL

I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION, AND THAT I AM A DULY LICENSED CIVIL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA

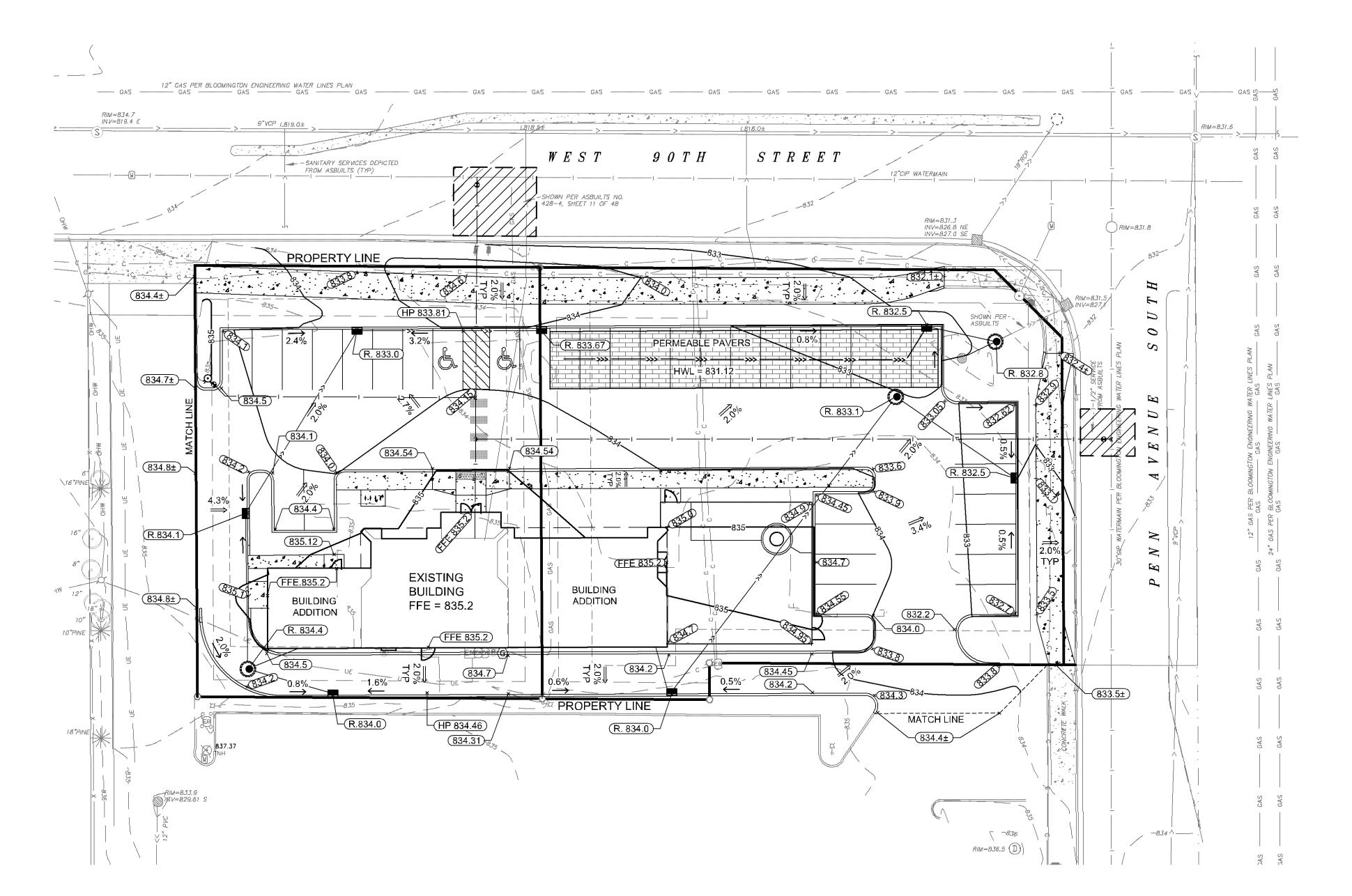
NOT FOR CONSTRUCTION
Brian Field, PE

Drian Fiel

09/27/202 DAT

13605 1st Avenue N. #100 Plymouth, MN 55441 | ae-mn.com P 763.412.4000 | F 763.412.4090 Anderson Engineering of Minnesota, LLC

GRADING & DRAINAGE PLAN


DRAWN BY: BF

CHECKED BY: BF

C

16318 (AEMN)

COPYRIGHT © BY HTG ARCHITECTS

0 20' 4

GENERAL NOTES

- 1. ALL CONSTRUCTION SHALL COMPLY WITH RECOMMENDATIONS OF THE SOIL ENGINEER UNLESS DIRECTED OTHERWISE.
- 2. ALL CONSTRUCTION SHALL COMPLY WITH THE MOST CURRENT CITY OF BLOOMINGTON CODE AND STANDARDS, AND THE 2016 EDITION OF MNDOT STANDARD CONSTRUCTION SPECIFICATIONS (INCLUDING SUPPLEMENTS) AND THE C.E.A.M. STANDARD SPECIFICATIONS-2013 EDITION UNLESS DIRECTED OTHERWISE.
- 3. ALL CONSTRUCTION SHALL COMPLY WITH APPLICABLE MUNICIPAL, WATERSHED DISTRICT, COUNTY, MPCA, DEPT. OF HEALTH, AND MNDOT PERMITS.
- 4. THE LOCATION AND TYPE OF EXISTING UTILITIES SHOWN ON THE PLANS ARE FOR GENERAL INFORMATION ONLY. THE INFORMATION IS NOT WARRANTED TO BE ACCURATE OR COMPLETE. THE CONTRACTOR, IN COOPERATION WITH THE APPROPRIATE UTILITY COMPANY OR MUNICIPALITY, IS RESPONSIBLE FOR VERIFYING
- THE LOCATION AND DEPTH OF ALL UNDERGROUND UTILITIES.

 5. PROVIDE MINIMUM 10' HORIZONTAL & 18" VERTICAL SEPARATION OF ALL WATERMAIN
- CROSSINGS FROM STORM OR SANITARY SEWER.

 6. ALL WATER SERVICE SHALL BE INSTALLED WITH 8' MINIMUM COVER FROM FINISHED GRADE, MAX 10 FEET.
- 7. HDPE PIPE CONNECTIONS INTO ALL CONCRETE STRUCTURES MUST BE MADE WITH WATER TIGHT MATERIALS UTILIZING AN A-LOK OR WATERSTOP GASKET OR BOOT, CAST-IN-PLACE RUBBER BOOT, OR APPROVED EQUAL. WHERE THE ALIGNMENT PRECLUDES THE USE OF THE ABOVE APPROVED WATERTIGHT METHODS, CONSEAL 231 WATERSTOP SEALANT, OR APPROVED EQUAL WILL ONLY BE ALLOWED AS APPROVED BY THE ENGINEER.
- 8. ALL NEW NON METALLIC SANITARY AND WATER SERVICE PIPE SHALL HAVE TRACER WIRE, PER SPECIFICATIONS.
- 9. LOCATE AND PROTECT EXISTING UTILITIES UNLESS OTHERWISE NOTED.
 10. SUBSTITUTIONS FROM INFO. SHOWN HEREON SHALL BE REVIEWED AND APPROVED
- BY THE ENGINEER OF RECORD AND CITY ENGINEER.

 11. ALL PORTIONS OF THE STORM SEWER SYSTEM LOCATED WITHIN 10 FEET OF A
 BUILDING OR WATER SERVICE LINE MUST BE TESTED IN ACCORDANCE WITH
 MINNESOTA RULES, CHAPTER 4714, SECTION 1109.0. TESTING OF WATER AND SEWER
- SHALL COMPLY WITH 2013 CEAM REQUIREMENTS.

 12. PVC SANITARY SEWER MUST MEET ASTM STANDARDS LISTED IN MINNESOTA RULES, CHAPTER 4714, TABLE 701.1 AND INSTALLATION STANDARD 1. FITTINGS 4 T 15 INCHES IN DIAMETER, SHALL CONFORM TO ASTM D3034, TYPE PSM, SDR 26. PIPE AND FITTINGS SHALL HAVE ELASTOMERIC GASKET JOINTS PROVIDING A WATERTIGHTS SEAL WHEN TESTED IN ACCORDANCE WITH ASTM D3212. JOINTS SEALS ARE TO BE MECHANICAL CLAMP RING TYPE, STAINLESS STEEL EXPANDING AND CONTRACTING SLEEVE NEOPRENE RIPPED GASKET FOR POSITIVE SEAL. GASKETS SHALL CONFORM TO ASTM F477.
- 13. HDPE STORM SEWERS MUST MEET ASTM F714 (SEE MINNESOTA RULES, CHAPTER 4714 SECTION 1102.4 AND INSTALLATION STANDARD 1). WATER TIGHT JOINTS MUST BE USED AT ALL CONNECTION INCLUDING STRUCTURES. THE INSTALLATION MUST COMPLY WITH ASTM D2321.
- 14. ALL COMPONENTS OF WATER SYSTEM, UP TO THE WATER METER OR FIRE SERVICE EQUIPMENT MUST UTILIZE PROTECTIVE INTERNAL COATINGS MEETING CURRENT ANSI/AWWA STANDARDS FOR CEMENT MORTAR LINING OR SPECIAL COATING. THE USE OF UNLINED OR UNCOATED PIPE IS NOT ALLOWED. PROVIDE 8 MIL POLYWRAP ON DIP WATERMAIN PER CITY STANDARDS.
- 15. COMBINATION FIRE AND DOMESTIC SERVICES MUST TERMINATE WITH A THREAD ON FLANGE OR AN MJ TO FLANGE ADAPTER.
- 16. UTILITY AND MECHANICAL CONTRACTORS MUST COORDINATE THE INSTALLATION OF ALL WATER AND SEWER SERVICE PIPES INTO THE BUILDING TO ACCOMMODATE CITY INSPECTION AND TESTING.
- 17. CONTRACTOR TO PROVIDE UTILITY AS-BUILTS TO CITY OF BLOOMINGTON PRIOR TO CERTIFICATE OF ACCUPANCY.

	STRUCTURE	SCHEDULE	
STRUCTURE NUMBER	SIZE	CASTING	NOTES
OSC-1	60"-DIA	R-1642	SOLID "STORM"
CB-2	48"-DIA	R-3067	_
CBMH-3	48"-DIA	R-3067	_
CBMH-4	48"-DIA	R-3067	_
STMH-5	48"-DIA	R-1642	SOLID "STORM"
CB-6	2'X3' REC	R-3067	_
STMH-7	48" DIA	R-1642	SOLID "STORM"
CB-8	2'X3' REC	R-3067	
CB-9	2'X3' REC	R-3067	_
CB-10	2'X3' REC	R-3067	

KEY NOTES

- WET TAP EXISTING 12" WATER MAIN WITH SADDLE AND 6" GATE VALVE. REMOVE EXISTING SERVICE PER CITY OF BLOOMINGTON STANDARDS.
-) INSTALL 6" GATE VALVE AND RISER BOX.
- INSTALL 6" HDPE INTERNAL ROOF DRAIN FOR BUILDING ADDITION.
 COORDINATE FINAL LOCATION AND TYPE WITH MASTER PLUMBER.
- REMOVE AND REPLACE IN- KIND FOR UTILITY CONNECTION PROVIDE STAGE APPROPRIATE VEHICLE AND PEDESTRIAN TRAFFIC CONTROL MEASURES PER MUTCD.
- 5) PROTECT EXISTING SANITARY SERVICE IN PLACE.
- ABANDONED WATER SERVICE AT MAIN PER CITY STANDARDS.
- INSTALL 6" HYDRANT LEAD WITH GATE VALVE $\begin{pmatrix} 10 \\ C6 \end{pmatrix}$
- 8 WET TAP EXISTING 30" WATER MAIN WITH SADDLE AND 6" GATE VALVE.
- 9 INSTALL 6X6 TEE

LEGEND	
	PROPERTY LIMITS
	EXISTING WATERMAIN
***************************************	EXISTING SANITARY SEWER
$<<<\cdots>$	EXISTING STORM SEWER
<u> </u>	PROPOSED WATERMAIN
	PROPOSED STORM SEWER
	PROPOSED STORM INLETS
4 4 4	PROPOSED CONCRETE WALK

PROPOSED BITUMINOUS ASPHALT

WWW.htg-architects.com

Minneapolis Tampa Bismarck

9300 Hennepin Town Road Minneapolis, MN 55347 Tel: 952.278.8880 Fax: 952.278.8822

PROJECT

GYROPOLIS

ADDITION/REMODELING

2325 W 90TH ST BLOOMINGTON, MINNESOTA

ISSUED S	ET	
REVISION	IS	
DATE 9/27/22	N0. _1_	CITY SUBMITTAL
	·	

I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION, AND THAT I AM A DULY LICENSED CIVIL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA

NOT FOR CONSTRUCTION

Brian Field, PE

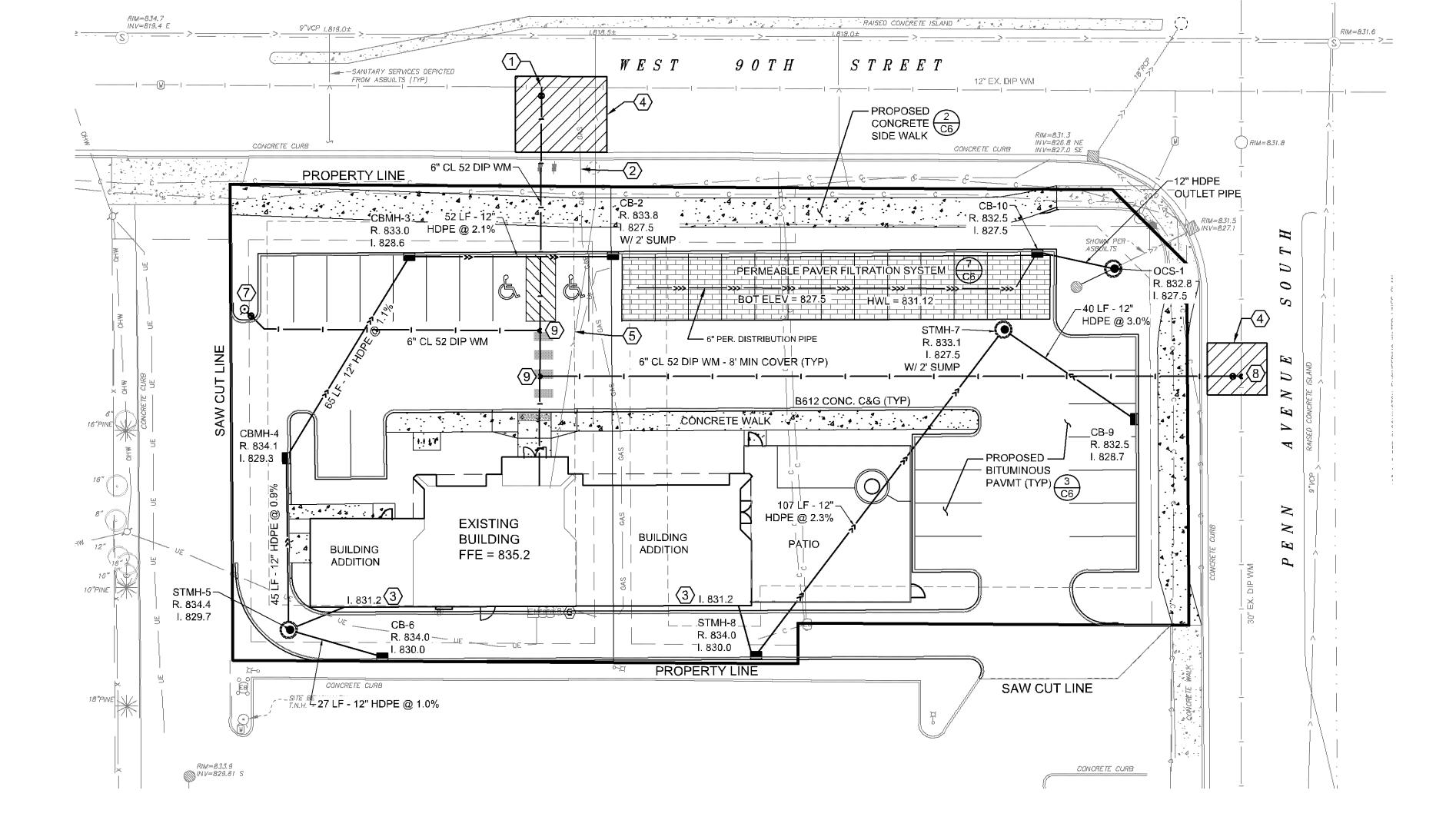
09/27/202 DA

Anderson Engineering of Minnesota, LLC

P 763.412.4000 | **F** 763.412.4090

UTILITY & PAVING PLAN

DRAWN BY: BF


_

CHECKED BY: BF

C4

16318 (AEMN)

COPYRIGHT © BY HTG ARCHITECTS

CALL 48 HOURS BEFORE DIGGING

Utilities Underground Location Center
DIAL 811

Know what's below,
Call before you dig.

STORM WATER POLLUTION PREVENTION PLAN NOTES:

- 1. GRADING CONTRACTORS SHALL VERIFY LOCATIONS AND ELEVATIONS OF ALL UNDERGROUND UTILITIES WITH THE RESPECTIVE UTILITY COMPANIES PRIOR TO
- 2. ALL EROSION CONTROL MEASURES CALLED FOR ON THESE PLANS AND SPECIFICATIONS, WHICH MAY INCLUDE SILT FENCE, SEDIMENTATION BASINS OR TEMPORARY SEDIMENT TRAPS, SHALL BE CONSTRUCTED AND SERVICEABLE IN THE FOLLOWING ORDER:
- A. ROCK CONSTRUCTION ENTRANCES A MINIMUM OF 50 FEET
- B. SILT FENCE C. TEMPORARY CULVERTS
- D. TEMPORARY SEDIMENTATION BASINS AND OUTFALL FACILITIES
- E. SORMWATER POND CONSTRUCTION F. COMMON EXCAVATION AND EMBANKMENT (GRADING)
- G. SEED AND MULCH OR SOD H. BIO-ROLL BARRIERS IN FINISHED GRADED AREAS
- I. INLET AND OUTLET FACILITIES SUBSEQUENT TO STORM SEWER WORK
- 3. GRADING CONTRACTOR SHALL PROVIDE AND MAINTAIN ALL EROSION CONTROL MEASURES IN ACCORDANCE WITH CITY AND NPDES PHASE II PERMITTING REQUIREMENTS AS WELL AS EROSION CONTROL MEASURES AS MAY BE SHOWN ON THESE PLANS OR SPECIFICATIONS. GRADING CONTRACTOR SHALL IMPLEMENT ANY ADDITIONAL EROSION CONTROL MEASURES AS MAY BE REQUIRED TO PROTECT ADJACENT PROPERTY.
- 4. ALL EROSION CONTROL FACILITIES SHALL BE MAINTAINED BY THE CONTRACTOR DURING GRADING OPERATIONS. ANY TEMPORARY FACILITIES WHICH ARE TO BE REMOVED AS CALLED FOR ON THESE PLANS AND SPECIFICATIONS SHALL BE REMOVED BY THE GRADING CONTRACTOR WHEN DIRECTED BY THE ENGINEER. THE GRADING CONTRACTOR SHALL RESTORE THE SUBSEQUENTLY DISTURBED AREA IN ACCORDANCE WITH THESE PLANS AND SPECIFICATIONS.
- 5. THE GRADING CONTRACTOR SHALL SCHEDULE THE SOILS ENGINEER SO THAT CERTIFICATION OF ALL CONTROLLED FILLS WILL BE FURNISHED TO THE OWNER DURING AND UPON COMPLETION OF THE PROJECT.
- 6. ALL DISTURBED AREAS, EXCEPT AREAS TO BE PAVED AND/OR SPECIFICALLY DESIGNED BY A LANDSCAPE PLAN, SHALL BE COVERED WITH A MINIMUM 6" OF TOP SOIL OR AS INDICATED IN SPECIFICATIONS OR LANDSCAPING PLAN. ALL DISTURBED AREAS SHALL BE SEEDED & MULCHED AT THE PRESCRIBED RATES WITHIN 72 HOURS OF FINAL GRADING UNLESS OTHERWISE NOTED.

MNDOT NO. 25-141 59# / ACRE MULCH: 2 TONS / ACRE (DISK ANCHORED) TYPE 3 22-5-10 350# / ACRE

ALL EXPOSED SOIL AREAS WITH A CONTINUOUS POSITIVE SLOPE WITHIN 200 LINEAL FEET OF ANY SURFACE WATER, MUST HAVE TEMPORARY EROSION PROTECTION OR PERMANENT COVER FOR THE EXPOSED SOIL AREAS YEAR ROUND, ACCORDING TO THE FOLLOWING TABLE OF SLOPES AND TIME FRAMES:

TYPE OF SLOPE TIME (Maximum time an area can remain open when the area is not actively being worked)

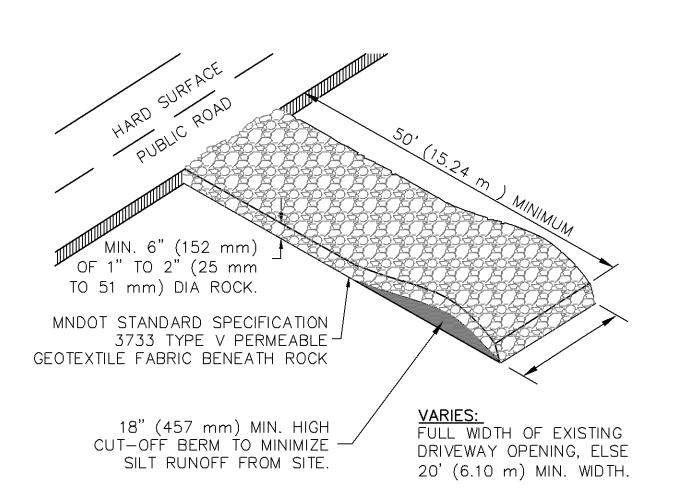
10:1 TO 3:1 4 DAYS FLATTER THAN 10:1 21 DAYS

- 7. THE EXISTING TOPOGRAPHY AND CONTOUR ELEVATIONS SHOWN ON THE PLAN WERE TAKEN FROM A PLAN FURNISHED BY OWNER.
- 8. CONTRACTORS GRADING AND EROSION CONTROL OPERATIONS SHALL TAKE PLACE WITHIN THE CONSTRUCTION LIMITS.
- 9. IT IS REQUIRED THAT SOILS TRACKED FROM THE SITE BY MOTOR VEHICLES BE CLEANED DAILY FROM PAVED ROADWAY SURFACES THROUGHOUT THE DURATION OF

10.PROVIDE TEMPORARY SEDIMENTATION BASINS AS DIRECTED BY THE ENGINEER

- 11. ALL REQUIREMENTS OF THE LOCAL WATERSHED DISTRICT SHALL BE SATISFIED PER THE APPROVED PERMIT.
- 12. ALL EROSION & SEDIMENT CONTROL MEASURES SHOWN ON THIS PLAN AND IMPLEMENTED IN THE FIELD AS DIRECTED BY THE ENGINEER SHALL CONFORM TO THE MPCA'S "PROTECTING WATER QUALITY IN URBAN AREAS: BEST MANAGEMENT PRACTICES FOR MINNESOTA".

- 13. DEWATERING AND / OR BASIN DRAINING DISCHARGE SHALL BE DIRECTED TO SEDIMENTATION BASINS WHEREVER POSSIBLE. ALL DISCHARGE POINTS SHALL BE ADEQUATELY PROTECTED FROM EROSION & SCOUR THROUGH USE OF APPROVED ENERGY DISSIPATION DEVICES.
- 14. ALL SOLID WASTE / CONSTRUCTION DEBRIS SHALL BE DISPOSED OF IN ACCORDANCE WITH MPCA REQUIREMENTS. HAZARDOUS MATERIALS SHALL BE STORED / DISPOSED OF IN COMPLIANCE WITH MPCA REGULATIONS.
- 15. CONTRACTOR SHALL USE RAPID STABILIZATION METHODS PER MNDOT 2575 AS NEEDED DURING THE COURSE OF THE WORK TO MAINTAIN CONFORMANCE WITH THE CITY AND NPDES II PERMIT REQUIREMENTS. THIS WORK SHALL CONSIST OF OPERATIONS NECESSARY TO RAPIDLY STABILIZE SMALL CRITICAL AREA, TO PREVENT OFF SITE SEDIMENTATION AND / OR TO COMPLY WITH PERMIT REQUIREMENTS. THE WORK MAY BE PERFORMED AT ANY TIME DURING THE CONTRACT AND DURING NORMAL WORKING HOURS. THIS WORK WILL BE CONDUCTED ON SMALL AREAS THAT MAY OR MAY NOT BE ACCESSIBLE WITH NORMAL EQUIPMENT. THIS WORK SHALL BE DONE IN ACCORDANCE WITH THE APPLICABLE MNDOT STANDARDS SPECIFICATIONS, THE DETAILS SHOWN IN THE PLANS, AND THE FOLLOWING:


THERE ARE FIVE STABILIZATION METHODS APPROVED FOR THESE OPERATIONS. THESE METHODS MAY BE CONDUCTED INDEPENDENTLY OR IN COMBINATION.

RAPID STABILIZATION

- TYPE 1 MULCH WITH DISC ANCHORING TYPE 3 MULCH WITH TYPE HYDRAULIC MULCH
- TYPE HYDRAULIC MULCH WITH SEED MIXTURE 22-11 CATEGORY 3 EROSION CONTROL BLANKET WITH SEED MIXTURE
- RIPRAP CLASS II WITH GEOTEXTILE TYPE III
- THESE EFFORTS WILL BE INCIDENTAL TO THE EROSION CONTROL BID ITEM.
- 16. CHANGE OF COVERAGE: FOR STORM WATER DISCHARGES FROM CONSTRUCTION PROJECTS WHERE THE OWNER OR OPERATOR CHANGES, (E.G., AN ORIGINAL DEVELOPER SELLS PORTIONS OF THE PROPERTY TO VARIOUS BUILDERS) THE NEW OWNER OR OPERATOR MUST SUBMIT A SUBDIVISION REGISTRATION WITHIN 7 DAYS OF ASSUMING TRANSFERS, SALE OR CLOSING ON THE PROPERTY.
- 17.INDIVIDUAL SITE BUILDERS SHALL BE RESPONSIBLE FOR PROVIDING ANY AND ALL NECESSARY EROSION CONTROL MEASURES AS MAY BE REQUIRED. REQUIRED ECM'S SHALL CONSIST OF BUT NOT BE LIMITED TOT HE FOLLOWING:
- A. STAKED FIBER LOG ROLLS AT BACK OF ALL CURB EXCEPT AT CONSTRUCTION /
- B. SILT FENCE ON ALL DOWN GRADIENT SLOPES FROM CONSTRUCTION AREA. SILT
- FENCE SHALL HAVE THE BOTTOM DUG IN WITH SOIL FIRMLY COMPACTED. C. ROCK CONSTRUCTION ENTRANCE HAVING 1" TO 2" CLEAR ROCK OVER GEOTEXTILE FABRIC.
- D. STREET CLEANING AS MAY BE REQUIRED SHOULD VEHICLE TRACKING OCCUR
- INDIVIDUAL SITE BUILDERS ARE REQUIRED TO MAINTAIN ECM'S UNTIL SUCH TIME AS INDIVIDUAL YARDS/VEGETATION ARE ESTABLISHED.
- 18. CONTRACTOR SHALL PROVIDE A TEMPORARY SEDIMENTATION BASIN ON SITE FOR CONSTRUCTION WASH OUT USE. TEMPORARY BASIN SHALL BE LOCATED AS TO PROVIDE EASY ACCESS FOR CONSTRUCTION VEHICLES AND CONCRETE TRUCKS AS
- 19.INLET SEDIMENTATION CONTROL IS TO BE PROVIDED TO ALL STORM SEWER CATCH BASIN THROUGHOUT CONSTRUCTION . MEASURES APPLIED SHALL COMPLY WITH BEST MANAGEMENT PRACTICES FOR MINNESOTA AND APPLICATION OF NPDES PHASE II AS APPROPRIATE FOR PHASE OF CONSTRUCTION.
- 20.CONTRACTOR SHALL PREVENT SOIL LOSS DURING CONSTRUCTION DUE TO WIND EROSION THROUGHOUT CONSTRUCTION. DUST SHALL BE SUPPRESSED THOUGH THE APPLICATIONS OF WATER, AS DEEMED NECESSARY BY THE CONTRACTOR, OR THROUGH EQUIVALENT BMP'S AS APPROVED BY THE ENGINEER.
- 21.IF LEED ACCREDITATION IS APPLICABLE, CONTRACTOR SHALL DOCUMENT THE IMPLEMENTATION OF THE EROSION AND SEDIMENTATION CONTROL PLAN THROUGH DATE-STAMPED PHOTOS AND INSPECTION LOGS / REPORTS. REPORTS SHALL INCLUDE AT A MINIMUM DESCRIPTION OF ALL EMPLOYED BMP'S (INCLUDING BOTH MEASURES TO PREVENT SOIL LOSS DUE TO RUNOFF AND SOIL LOSS DUE TO WIND EROSION), BMP'S DEEMED UNNECESSARY DUE TO SITE CONDITIONS, CORRECTIVE ACTIONS TAKEN IN RESPONSE TO PROBLEMS, AND ANY ADDITIONAL INFORMATION RELEVANT TO THE CONDITION OF THE EROSION AND SEDIMENT CONTROL PLAN AS IT WAS ESTABLISHED AT THE TIME OF CONSTRUCTION.

STORMV	/ATER POLLUTION PREVENTION PLA	N SCHEDULE OF INSTALLATION & MA	AINTENANCE
<u>ITEM</u>	INSTALLATION	INSPECTION & MAINTENANCE	REMOVAL
SILT FENCE	PRIOR TO COMMENCEMENT OF EARTHWORK OPERATIONS.	INSPECT & MAINT. AFTER EACH RUN-OFF EVENT. REMOVE SEDIMENTS AS REQUIRED.	AFTER TRIBUTARY DRAINAGE AREA IS RESTORED.
ROCK CONST. ENTRANCE	PRIOR TO COMMENCEMENT OF EARTHWORK OPERATIONS.	INSPECT REGULARLY. MAINTAIN AS NEEDED.	PRIOR TO PAVING.
INLET PROTECTION	UPON INLET CONSTRUCTING	WHEN 1/3 CAPACITY OF BMP IS REACHED	AFTER TRIBUTARY AREAS ARE FULLY RESTORED

NECESSARY.

ROCK CONSTRUCTION ENTRANCE DETAIL SCALE: N.T.S.

GENERAL NOTES

- (1) INSTALL AND MAINTAIN SILT FENCE PERIMETER SEDIMENT PROTECTION IN TURF AREAS. USE BIO-ROLLS AS NEEDED IN PAVED AREAS FOR PHASING PURPOSES.
- (2) INSTALL AND MAINTAIN SEDIMENT PROTECTION.
- INSTALL TEMPORARY ROCK ENTRANCE AT ALL CONSTRUCTION INGRESS AND EGRESS LOCATIONS PRIOR TO EXCAVATION AND TO BE MAINTAINED THROUGHOUT THE ENTIRE CONSTRUCTION PROCESS.

KEY NOTES

1NV=819.4 E

4

(4) INSTALL SEDIMENT CONTROL LOG PER MNDOT SPECIFICATION SECTION 2573.

9"VCP /_819_O±

PROPERTY LINE-

BUILDING ADDITION

W E S T

BUILDING

ADDITION

PROPERTY LIN

EXISTING

BUILDING

FFE = 835.2

- CONTRACTOR IS RESPONSIBLE FOR INSTALLATION, MAINTENANCE AND REMOVAL OF ALL APPLICABLE EROSION & SEDIMENT CONTROL ITEMS.
- SPECIFIED EROSION/SEDIMENT CONTROL MEASURES ARE THE MINIMUM. ADDITIONAL PRACTICES MAY BE REQUIRED DURING THE COURSE OF CONSTRUCTION.
- THE TOTAL DISTURBED AREA IS EQUAL TO 0.80 ACRES. THIS IS BELOW THE 1.0 ACRE THRESHOLD, AND THEREFORE AN MPCA PERMIT IS NOT REQUIRED.

 $9 \ 0 \ T \ H$

S T R E E T

(0.76 m)

SCALE: N.T.S.

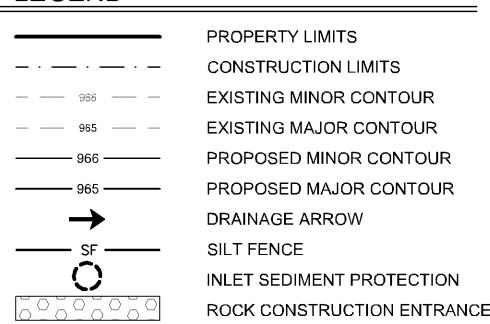
LEGEND

INV=826.8 NE INV=827.0 SE

- PLACE BOTTOM EDGE OF FENCE INTO 6" (153 mm) DEEP

- 2" (50.8 mm) X 2" (50.8 mm) HARDWOOD, PINE OR

STEEL FENCE POSTS. MINIMUM LENGTH 4.5'


- DRIVEN 2' (0.61 m) INTO THE GROUND.

TRENCH AND BACKFILLED IMMEDIATELY.

- 4' (1.22 m) ON CENTER

SILT FENCE INSTALLATION DETAIL

- POSTS SHALL BE:

architects

www.htg-architects.com

9300 Hennepin Town Road Minneapolis, MN 55347 Tel: 952.278.8880 Fax: 952.278.8822

PROJECT

RIM = 9JI

() RIM=831.8

0

FABRIC

GYROPOLIS

ADDITION/REMODELING

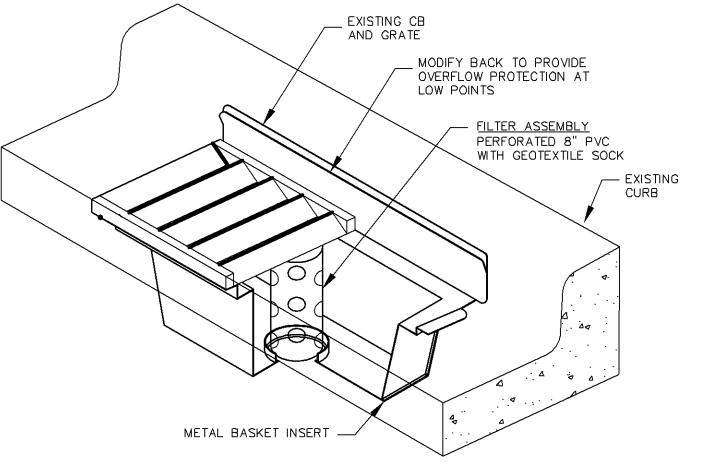
2325 W 90TH ST BLOOMINGTON, MINNESOTA

REVISION	S	
DATE	N0.	
<u>9/27/22</u>	_1_	CITY SUBMITTAL

I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION, AND THAT I AM A DULY LICENSED CIVIL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA

NOT FOR CONSTRUCTION

Brian Field, PE

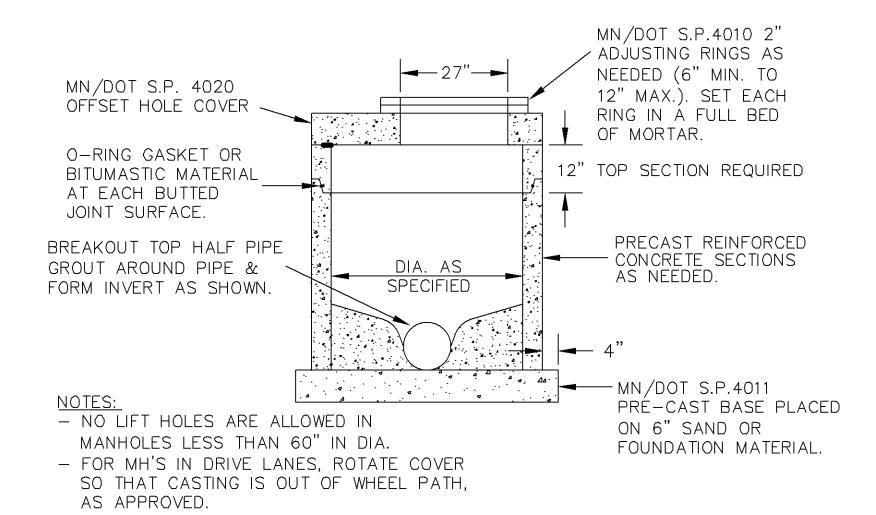

13605 1st Avenue N. #100 Plymouth, MN 55441 | ae-mn.com P 763.412.4000 | F 763.412.4090 Anderson Engineering of Minnesota, LL

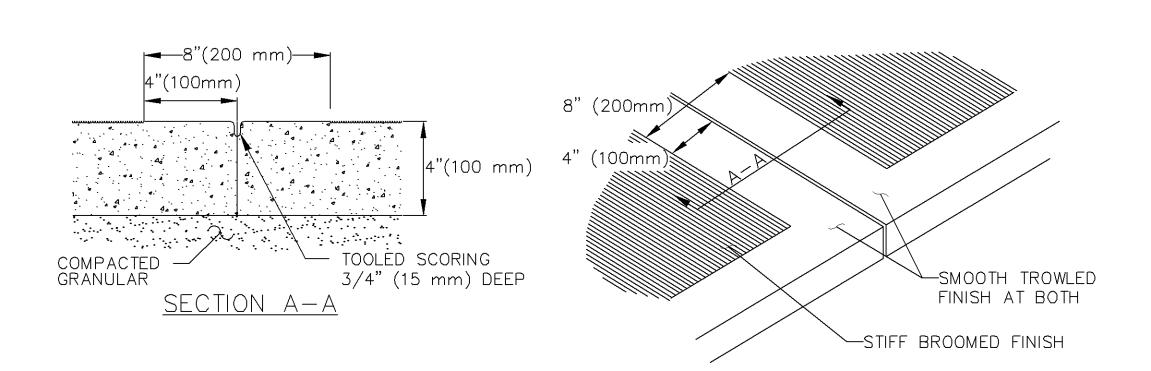
EROSION & SEDIMENT CONTROL PLAN

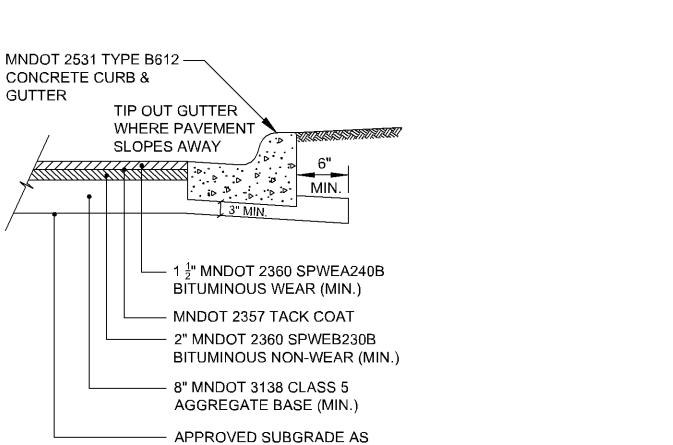
DRAWN BY: BF CHECKED BY: BF

C5

COPYRIGHT © BY HTG ARCHITECTS




- L SITE BENCHMARK: T.N.H. = 837.**3**7


INLET PROTECTION DETAIL

SCALE: N.T.S.

PL202200183

architects

www.htg-architects.com Tampa

9300 Hennepin Town Road Minneapolis, MN 55347 Tel: 952.278.8880 Fax: 952.278.8822

PROJECT

ISSUED SET

REVISIONS

DATE No.

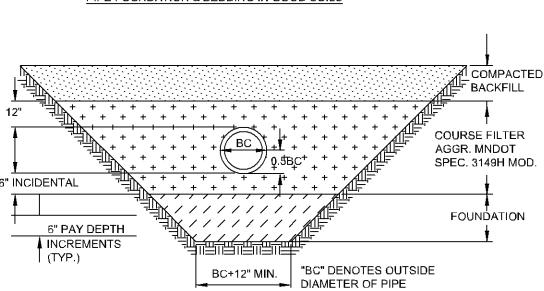
9/27/22 1 CITY SUBMITTA

ADDITION/REMODELING

VERIFIED BY GEOTECHNICAL

GYROPOLIS

BITUMINOUS PAVEMENT SECTION 3 SCALE: N.T.S


ENGINEER

COMPACTED BACKFILL GRANULAR **BORROW MNDOT** SPEC. 3149A MOD. BC+12" MIN. | "BC" DENOTES OUTSIDE DIAMETER OF PIPE

PIPE FOUNDATION & BEDDING IN GOOD SOILS

STANDARD MANHOLE DETAIL

SCALE: N.T.S.

IMPROVED PIPE FOUNDATION & BEDDING IN POOR SOILS

PVC OR HDPE PIPE BEDDING

PERMEABLE INFILTRATION SECTION

830.40 FLOW 12" HDPE -INV. 827.5 REINFORCE W/ 1/2 REBAR OR MESH - PER PRECAST KEYWAY CAST — SUPPLIERS DESIGN INTO MANHOLE <u>IE: 827.50</u> (SEE INSET) - GROUT TO INVERT

TYP. AASHTO/ASTM #57 STONE

OUTLET CONTROL STRUCTER - 1 DETAIL

CONCRETE WALK SECTION DETAIL

EX. 12" OUTLET -

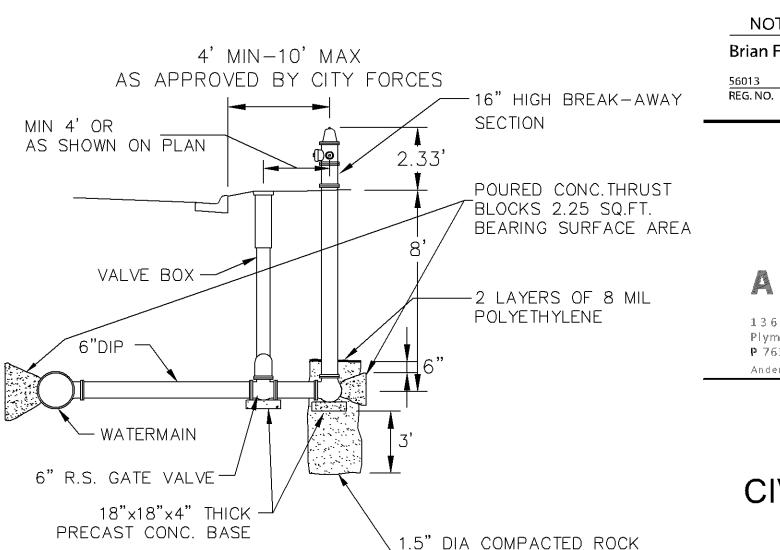
INV. 827.5

(CLEAN, ANGULAR ON ALL SIDES, NO FINES) 4"-6" BEDDING LAYER COMPACTED TO NO MOVEMENT. THICKER CROSS PERMEABLE PAVERS -- PAVEDRAIN SECTIONS WITH LARGER, COMPACTED ANGULAR STONE SEE DETAIL 10/C8 - 1 FT WIDE BY 6 FT DEEP (RECOMMENDED) ON ALL SIDES TBD BY ENGINEER. CONCRETE EDGE SURFACE SLOPE TO MATCH GRADING PLAN . – – – – – . – – – – – 1- – – – – – _ _ _ _ _ _ - PROPOSED CROSS-SECTION ASPHALT SIDE VIEW SECTION 4.0' TO 5.4' VARIES TO MATCH TYP. AASHTO/ASTM #57 STONE GRADING PLAN (CLEAN, ANGULAR ON ALL SIDES, NO FINES) 4"-6" BEDDING LAYER COMPACTED TO NO MOVEMENT. THICKER CROSS SECTIONS WITH LARGER, COMPACTED ANGULAR STONE - GEOTEXTILE MNDOT SPEC. (RECOMMENDED) ON ALL SIDES TBD BY ENGINEER. SECTION 3733 CLV 2-3" COARSE 6" PERFORATED **AGGREGATE** SLOPE ROCK -COLLECTION PIPE **CLEAN STONE BOTTOM TOWARDS** W/ SOCK INV. 827.5 (AASHTO SIZE #2) **COLLECTION PIPE** PREPARED SUBBASE — CROSS-SECTION PER GEOTECH REPORT

INSTALLATION NOTES

<u>PLAN</u>

62"


- 1. EXISTING SUBGRADE UNDER BED AREAS SHALL NOT BE SUBJECT TO EXCESSIVE CONSTRUCTION EQUIPMENT TRAFFIC PRIOR TO GEOTEXTILE AND STONE BED PLACEMENT.
- 2. BRING SUBGRADE OF STONE INFILTRATION BED TO LINE GRADE, AND ELEVATION INDICATED. FILL AND LIGHTLY REGRADE ANY AREAS DAMAGED BY EROSION, PONDING, OR TRAFFIC COMPACTION BEFORE PLACING OF STONE. TRANSVERSE SUBGRADE SLOPE TO BE 1.0% MIN, SEE GRADING PLAN FOR LONGITUDINAL SUBGRADE SLOPE.
- 3. PLACE GEOTEXTILE IN ACCORDANCE WITH MANUFACTURER'S STANDARDS AND RECOMMENDATIONS. ADJACENT TRIPS OF **GEOTEXTILE SHALL OVERLAP A MINIMUM OF 16-INCHES.** SECURE GEOTEXTILE AT LEAST FOUR (4) FEET OUTSIDE OF BED AND TAKE ANY STEPS NECESSARY TO PREVENT ANY RUNOFF OR SEDIMENT FROM ENTERING THE STORAGE BED.
- 4. INSTALL COURSE AGGREGATE IN 8-INCH MAXIMUM LIFTS. LIFTS OF 12-INCHES ARE ALLOWED OVER PIPE TO PREVENT DAMAGE. LIGHTLY COMPACT EACH LAYER WITH EQUIPMENT, KEEPING **EQUIPMENT MOVEMENT OVER STORAGE BED SUBGRADES TO A** MINIMUM. INSTALL AGGREGATE TO GRADES INDICATED ON DRAWINGS.
- 5. INSTALL STABILIZER BASE COURSE AGGREGATE EVENLY OVER SURFACE OF STONE BED, SUFFICIENT TO ALLOW PLACEMENT OF PAVEMENT, AND NOTIFY ENGINEER FOR APPROVAL.
- 6. FOLLOWING PLACEMENT OF BED AGGREGATE, THE GEOTEXTILE SHALL BE FOLDED BACK ALONG ALL BED EDGES TO PROTECT FROM SEDIMENT WASHOUT ALONG BED EDGES. AT LEAST A FOUR (4) FOOT EDGE STRIP SHALL BE USED TO PROTECT BEDS FROM ADJACENT BARE SOIL. THIS EDGE STRIP SHALL REMAIN IN PLACE UNTIL ALL BARE SOILS CONTIGUOUS TO BEDS ARE STABILIZED AND VEGETATED. IN ADDITION, TAKE ANY OTHER **NECESSARY STEPS TO PREVENT SEDIMENT FROM WASHING** INTO BEDS DURING SITE DEVELOPMENT. WHEN THE SITE IS **FULLY STABILIZED, TEMPORARY SEDIMENT CONTROL DEVICES** SHALL BE REMOVED.

2325 W 90TH ST BLOOMINGTON, MINNESOTA

- HYDRANT TO BE:
- O WATEROUS PACER CLASSIC. o MUELLER SUPERCENTURION 250 MODEL A-423. O OR APPROVED EQUAL.
- EQUIP WITH THREE HOSE NOZZLES/CONNECTIONS AS FOLLOWS: o ONE - FACTORY INSTALLED 5 INCH STORZ-TYPE, QUARTER TURN PUMPER NOZZLE/CONNECTOR, INCLUDING A MANUFACTURER SUPPLIED AND INSTALLED ANODIZED ALUMINUM NOZZLE CAP WITH A 1.5 INCH PENTAGON NUT AND NO ROCKER LUG.
- o TWO 2.5 INCH HOSE NOZZLES/CONNECTIONS (WITH NATIONAL STANDARD THREADS) AND STANDARD NOZZLE CAPS WITH 1.5 INCH PENTAGON NUTS, AND NO ROCKER LUGS.
- USE SS NUTS AND BOLTS AS APPROVED BY THE ENGINEER. • ALL EXPOSED WATERMAIN SHALL BE WRAPPED WITH
- POLYETHYLENE IN ACCORDANCE WITH AWWA C-105
- BARREL TO BE BRIGHT RED.

ANTI-CHATTER BRASS UPPER VALVE WASHER.

- ALL VALVES TO OPEN COUNTER-CLOCKWISE. • SEE TYPICAL VALVE INSTALLATION DETAIL FOR VALVE DETAILS.
- WATEROUS PACER CLASSIC HYDRANTS SHALL INCLUDE INSTALLATION OF THE MANUFACTURERS MOST CURRENT

(LIMESTONE IS NOT APPROVED)

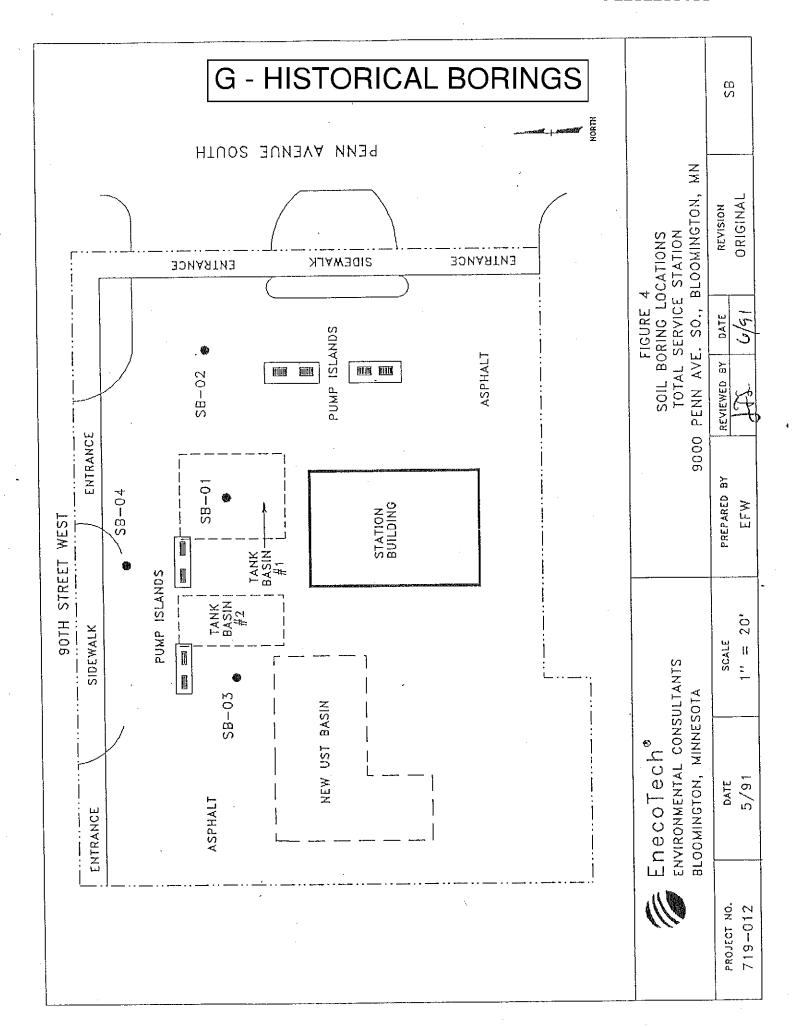
I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION, AND THAT I AM A DULY LICENSED CIVIL ENGINEER UNDER THE

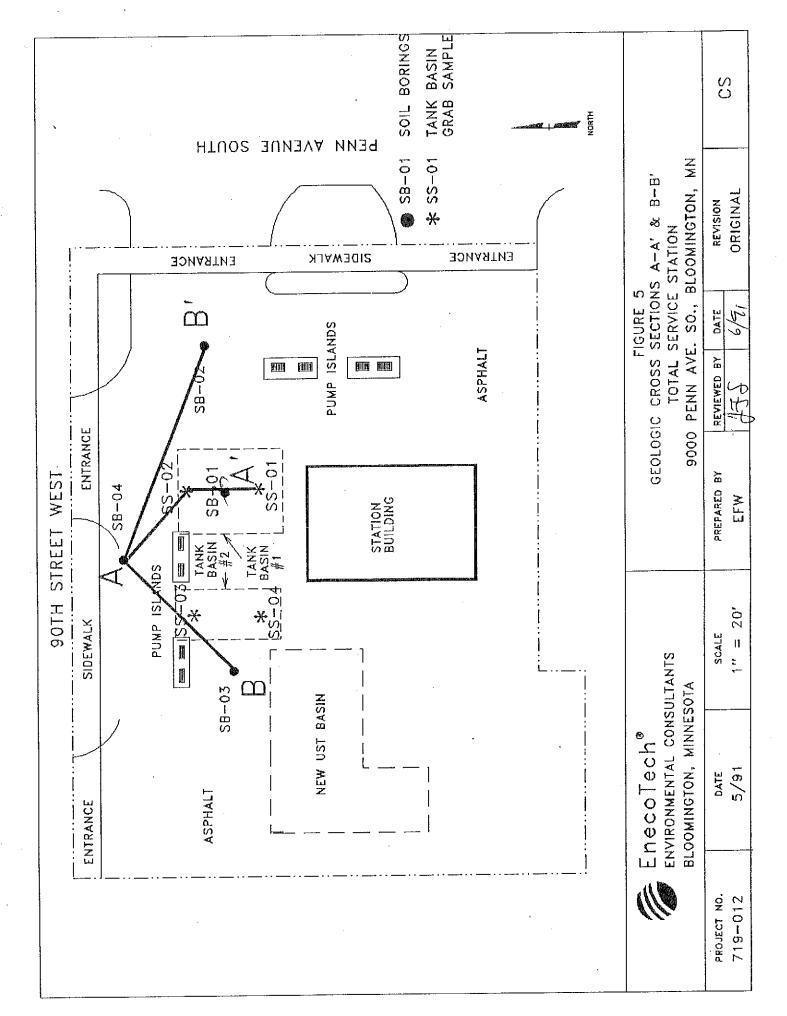
LAWS OF THE STATE OF MINNESOTA

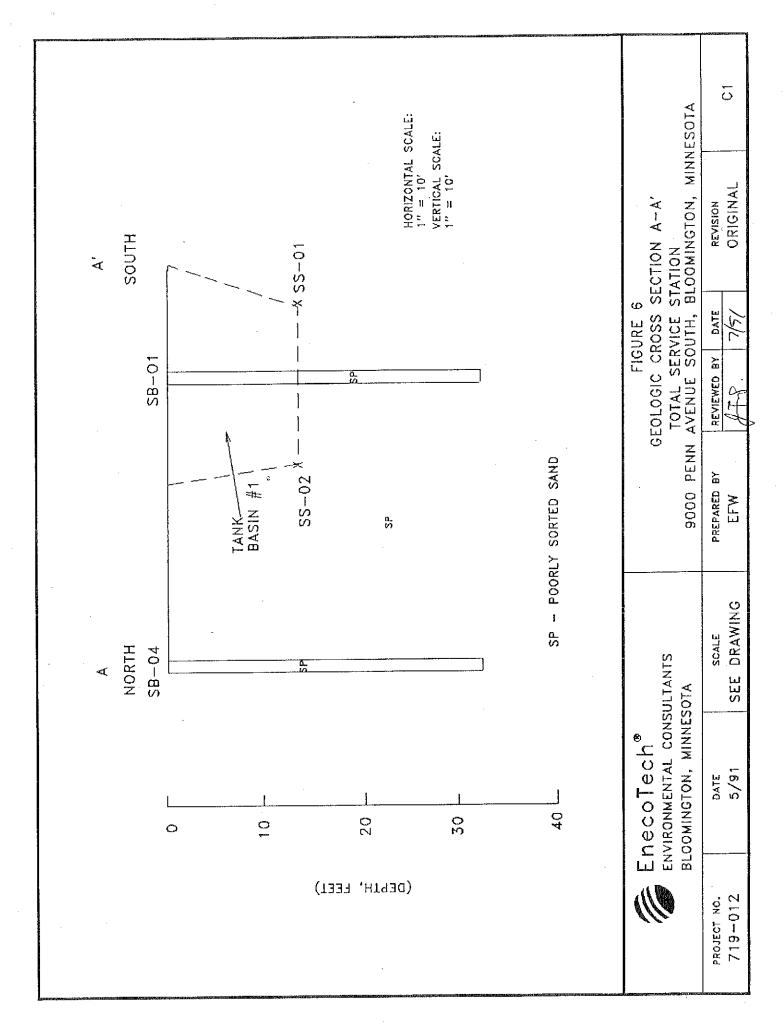
NOT FOR CONSTRUCTION Brian Field, PE 09/27/2022 DATE

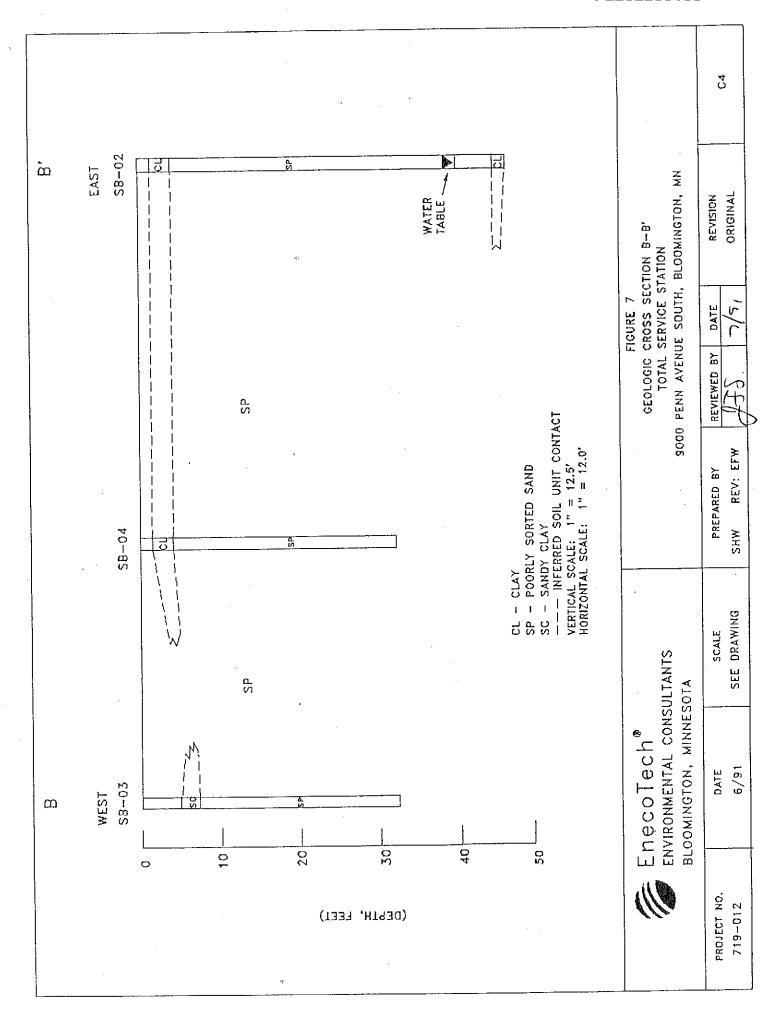
Plymouth, MN 55441 | ae-mn.com P 763.412.4000 | F 763.412.4090 Anderson Engineering of Minnesota, LLO

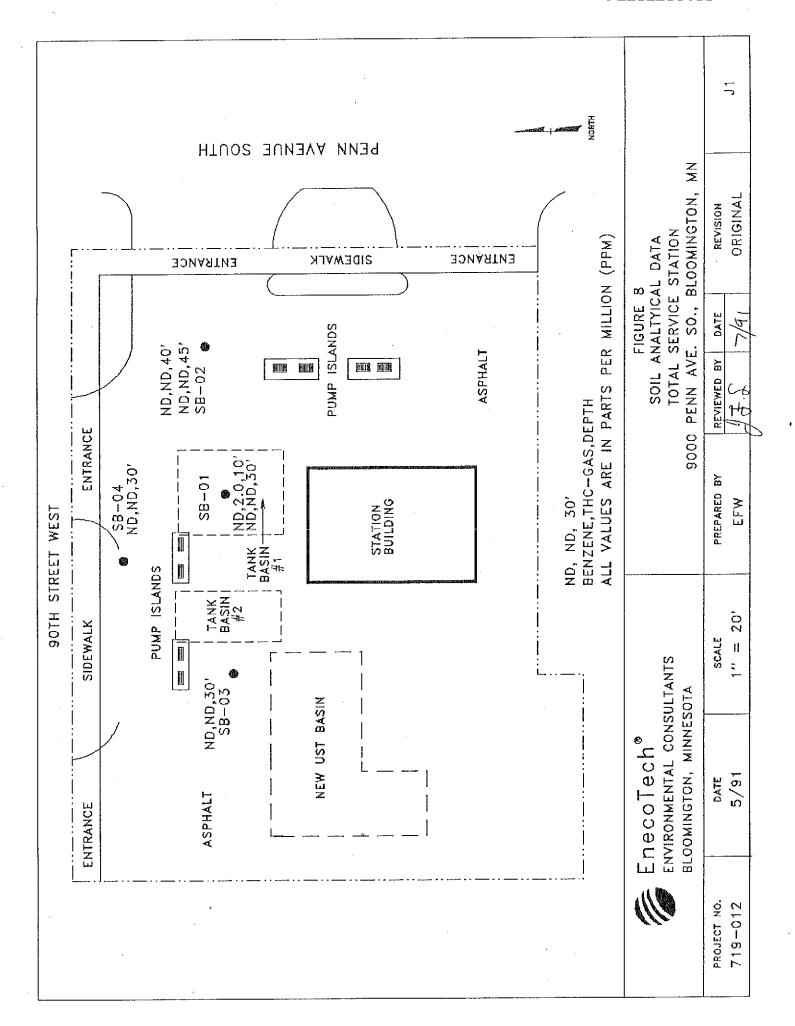
CIVIL DETAILS

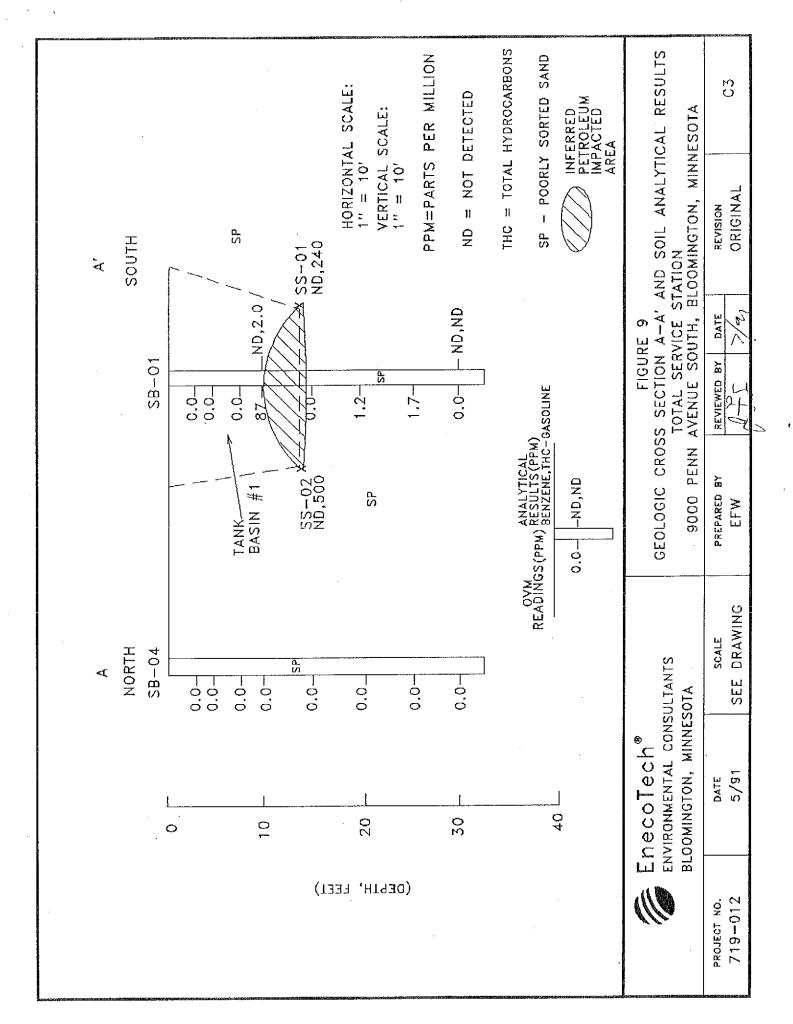

HYDRANT INSTALLATION DETAIL
SCALE: N.T.S.

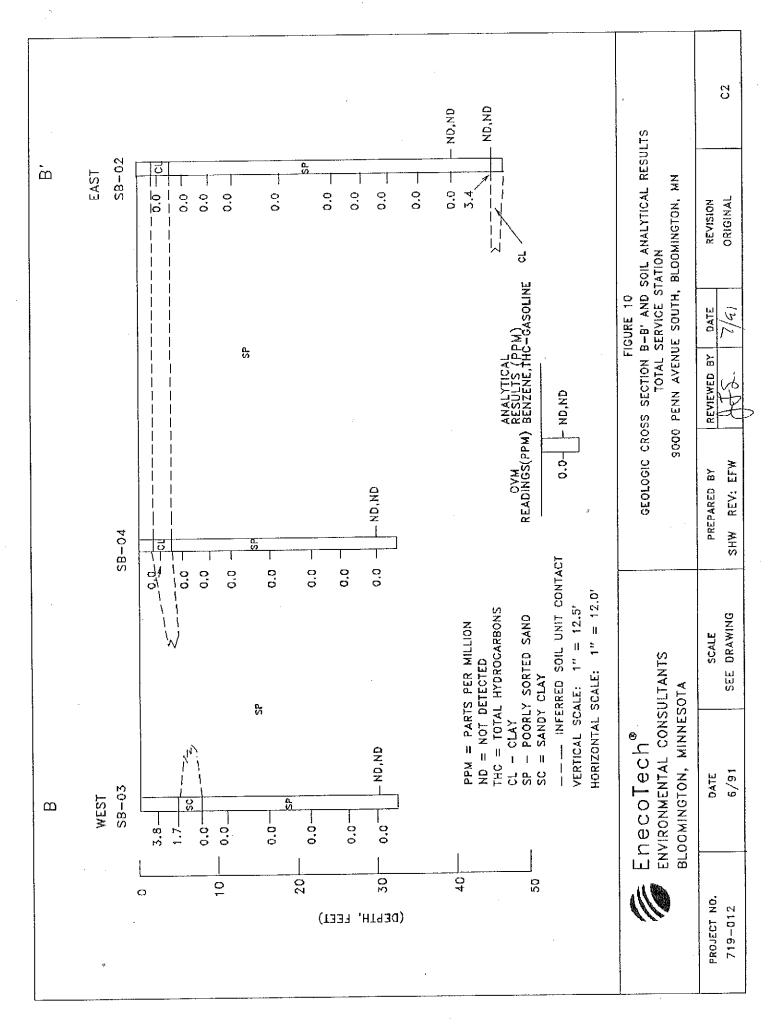

drawn by: BF CHECKED BY: BF


C6


16318 (AEMN) COPYRIGHT © BY HTG ARCHITECTS


PERMEABLE PAVER NOTES PERMEABLE PAVER SECTION





TOTAL PETROLEUM INC JULY 12, 1991 REPORT REMEDIAL INVESTIGATION

9000 PENN AVENUE S. TOTAL PETROLEUM BLOOMINGTON

HENNEPIN COUNTY LEAK 3106

NOT RUBLIC INFORMATION ON SIGNATED) (INITIALS)

THIS FILE HAS BEEN CHECKED FO

BOX #179028184

_1

File LEAK STA

Requ

H - LUST CLOSURE LETTER

Minnesota Pollution Control Agency

520 Lafayette Road, Saint Paul, Minnesota 55155-3898 Telephone (612) 296-6300

September 9, 1991

Mr. Mike Brown 1 Denver Place 999 18th Street Suite 2201 P.O. Box 500 Denver, Colorado 80201

Dear Mr. Brown:

RE: Petroleum Tank Release Site Closure Site: Total Petroleum Station, 9000 Penn Avenue South, Bloomington Site ID#: LEAK00003106

The Minnesota Pollution Control Agency (MPCA) staff has determined that the cleanup performed in response to the petroleum tank release at the site referenced above has adequately addressed the petroleum contamination, and therefore the file regarding this release will be closed.

On August 22, 1990, a petroleum tank release was reported to the MPCA. Since then you have taken the following corrective actions in response to the release:

- Three petroleum underground storage tanks (USTs) were removed from the site.
 - one 10,000 gallon unleaded gasoline UST.
 - one 6,000 gallon unleaded gasoline UST.
 - one 6,000 gallon regular leaded gasoline UST.
- Approximately 228 cubic yards of petroleum contaminated soil was removed from the site. Soils were treated by CleanSoils, Incorporated and used as road base. Contamination remains on-site at low levels.
- 3. Four soil borings were completed to further define the extent and magnitude of soil and/or ground water contamination. Laboratory analysis of a soil sample taken from a boring, completed through the former tank basin, detected low levels of contamination (87 parts per million) at 10 to 12 feet. A sample from the base of the borehole did not detect hydrocarbon contamination.

Mr. Mike Brown Page 2 September 9, 1991

4. Laboratory analysis of soil samples taken at the water table (40 feet) did not detect hydrocarbon contamination above the method detection limit of 1.2 parts per million, total hydrocarbons as gasoline.

Based on the currently available information, we believe these actions have adequately addressed the petroleum tank release. Therefore, MPCA staff does not intend to require any more investigation or cleanup work in response to this release. However, the MPCA reserves the right to reopen this file and require additional work if in the future more work is determined to be necessary, and this letter does not release any party from liability for this contamination.

Because you performed the requested work, the state may reimburse you for a major portion of your costs. The Petroleum Tank Release Cleanup Act establishes a fund which in certain circumstances provides partial reimbursement for petroleum tank release cleanup costs. This fund is administered by the Petroleum Tank Release Compensation Board (Petro Board). More specific eligibility rules are available from the Petro Board (612/297-4017).

Thank you for your cooperation with the MPCA in responding to this petroleum tank release to protect the public health and the environment of the state of Minnesota. If you have any questions regarding this correspondence, please call me at 612/297-8611.

Sincerely,

Mark Koplitz

Pollution Control Specialist Tanks and Spills Section Hazardous Waste Division

MK:np

cc: Ulyssus Seal, Fire Chief, Bloomington
E.L. Woulfe, City Clerk, Bloomington
Greg Lie, Hennepin County Solid Waste Officer, Minneapolis
Jim Simonet, EnecoTech Environmental Consultants, Inc., Bloomington

CleanSoils CleanSoils Inc. 84 2nd Avenue S.E., New Brighton, MN 55112 • (612) 639-8811 • FAX (612) 639-8813

October 24, 1990

Mr. Mike Brown 1 Denver Place 999 18th Street Suite 2201 P.O. Box 500 Denver, Colorado 80201

Dear Mr. Brown:

RE: Final Report on Soil Treatment and Notification of Post-Burn Sampling Results

Site: 900@Penn Avenue South, Bloomington, MN

MPCA Leak ID#: LEAK00003106 CleanSoils Project #: 90.143

CleanSoils has successfully completed the thermal treatment of petroleum contaminated soil from the above referenced site. The treated soil meets all MPCA requirements. Attached please find a copy of independent post-burn soil analyses for BTEX and Below is other information regarding the soil treated.

> Quantity of Soil: 276.24 tons Completion Date: October 15, 1990

Post-Burn Samples: 90.143-1

Final Disposition of Soil: Roadbase

If you should have any questions regarding this project, please contact me at (612) 639-8811.

Sincerely,

David H. Kress Project Manager

attachments

pc: File

Bob Dullinger, MPCA

Consultant

REMEDIAL INVESTIGATION REPORT TOTAL PETROLEUM INC. 9000 PENN AVENUE SOUTH BLOOMINGTON, MINNESOTA

Prepared For:

TOTAL PETROLEUM INC.
999 18th Street
Suite 2201
Denver, Colorado 80202

Prepared By:

ENECOTECH MIDWEST, INC. 3050 Metro Drive, Suite 115 Bloomington, Minnesota 55425

July 12, 1991

PROJECT NO: 719-012

TABLE OF CONTENTS

					Page
1.0	Υ	1		·	1
1.0		duction			1
	1.1	Purpose			1
	1.2	Scope-of-Work			1 1
	1.3	Previous Reports			1
2.0	Back	ground Information			3
	2.1	Site Setting		•	3
	2.2	Site History			3
	2.3	Regional Geology			3
	2.4	Regional Hydrogeology			3
3.0	Site	Investigation Procedures			2
	3.1	Soil Boring Placement	•		4
	3.2	Soil Boring Procedures			2
	3.3	Soil Sampling Procedures		•	4
4.0	Resu	ults and Discussion			5
	4.1	Site Geology			5
	4.2	Site Hydrogeology			4
	4.3	Soil Quality	•		
		4.3.1 Soil Organic Vapor Data			2
		4.3.2 Soil Laboratory Analytical Data			4
	4.4	Hydrocarbon Distribution		•	-
5.0	Sum	mary			.7
6.0	Cond	clusions			8
7.0	Reco	ommendations			ç
8.0	Refe	rences			10

LIST OF FIGURES

Figure	
1	Site Location
2	Site Map
3	Water Table/Buried Glacial Aquifer
4	Soil Boring Location Map
5	Geologic Cross Section A-A' and B-B'
6	Geologic Cross Section A-A'
7	Geologic Cross Section B-B'
8	Soil Analytical Data
9	Geologic Cross Section A-A' and Soil Analytical Results
10	Geologic Cross Section B-B' and Soil Analytical Results

LIST OF TABLES

<u>Table</u>		
1 2	•	Soil Sample Vapor Organic Data Soil Analytical Data

APPENDICES

Appendix	
A	Excavation Report for Petroleum Release Sites
В	Contaminated Soil Disposal Information
C	Soil Boring Logs
D	Chain of Custody
E	Laboratory Data Sheets

1.0 INTRODUCTION

1.1 Purpose

EnecoTech Midwest, Inc. (EnecoTech) was retained by Total Petroleum, Inc. (Total) to perform a remedial investigation at the Total retail service station located at 9000 Penn Avenue South, Bloomington, Minnesota. The investigation was in response to data collected by EnecoTech during underground storage tank (UST) removal activities conducted on October 3, 1990. The data indicated that site soils had been impacted by a petroleum hydrocarbon release. The purpose of the investigation was to:

- o Determine the nature, extent and magnitude of hydrocarbon release(s) to site soils; and
- o Provide options and recommendations for remediation of hydrocarbon impacts, if necessary.

1.2 Scope-of-Work

An investigation scope—of—work for the site was developed and implemented by EnecoTech with the approval of Total. The scope—of—work involved the characterization of site geology, hydrogeology, soil quality, and potential hydrocarbon sources. Characterization of these items was accomplished by:

- o Drilling four (4) soil borings,
- o Logging geologic materials encountered in the borings,
- o Monitoring soil gas vapors with an OVM Systems photo-ionizer (OVM),
- o Collecting soil samples for laboratory analyses,

1.3 Previous Reports

A Minnesota Pollution Control Agency (MPCA) "Excavation Report for Petroleum Release Sites" for the subject location (Appendix A) summarized tank excavation activities performed at the site on October 3, 1990. A summary of this report is provided below:

- One (1) 6,000 gallon regular gasoline UST and one (1) 6,000 gallon unleaded gasoline UST were excavated and removed from Tank Basin #1 at the subject location. In addition, one (1) 10,000 gallon unleaded gasoline UST was excavated and removed from Tank Basin #2.
- o Some corrosion was noted but no holes in the tanks were visible.
- o Soils in the tank pit consisted of sandy clay.
- o Ground water was not encountered during the UST excavations
- o Bedrock was not encountered during the UST excavations.

- Elevated OVM readings were measured in soils from beneath and adjacent to the USTs in both Tank Basin #1 and Tank Basin #2 (Figure 2 and 3, Appendix A). OVM readings ranged from 5.3 to 965 parts per million (ppm) in Tank Basin #1 and from 0 to 827 ppm in Tank Basin #2.
- o Four (4) soil samples were collected from beneath the former UST locations. Total hydrocarbons (THC) as gasoline were detected in two (2) of the four (4) samples at concentration levels of 240 ppm and 500 ppm. Concentration levels of lead ranged from 2 to 23 ppm. However, none of the four (4) samples contained detectable concentration levels of benzene.
- o A complete excavation of the petroleum impacted soil was not considered feasible due to the geotechnical instability of the unconsolidated sand and the potential for structural damage to existing above ground structures. Approximately, 228 cubic yards of gasoline impacted soil was removed and sent to a local soil incinerator with MPCA approval. All necessary information pertaining to the contaminated soil removal and disposal may be found in Appendix B.

2.0 BACKGROUND INFORMATION

2.1 Site Setting

The site is located at 9000 Penn Avenue South, Bloomington, Minnesota (Figure 1). At the time of the investigation, above ground structures included the station building and two pump islands located to the north and east of the station building (Figure 2). The below ground structures included one (1) 6,000 gallon regular gasoline steel UST, one (1) 6,000 gallon unleaded gasoline steel UST, and one (1) 10,000 gallon unleaded gasoline steel UST. These three USTs were located in the north central portion of the property. The area surrounding the site is occupied by an Amoco Service Station to the north; Wallys Restaurant to the east; a Burger King Restaurant to the south; and a Dunkin Dorrut Store to the west.

2.2 Site History

No information was available regarding the site history at the time of this report preparation.

2.3 Regional Geology

The geology of the region has been characterized from published Minnesota Geological Survey (MGS) information. Available information indicates that the region is underlain by Pleistocene age fluvial terrace deposits consisting of sand, gravely sand and silty sand. These glacial deposits range in thickness from approximately 100 to 200 feet (Bloomgren, 1979) and overlie bedrock composed of the Prairie du Chein group.

2.4 Regional Hydrogeology

The glacial deposits form an unconfined buried glacial aquifer. Regional groundwater flow direction for the unconfined buried glacial aquifer is to the southeast (Figure 3). Glacial deposits that underlie this portion of Bloomington yield moderate amounts of water to wells. The major bedrock aquifers in the region are the St. Peter, Prairie du Chien — Jordan and Mt. Simon—Hinkley Aquifers. These aquifers are approximately 100 to 800 feet below ground surface (bgs).

The St. Peter Sandstone yields 9 to 100 gallons per minute (gpm) and is primarily used for private domestic wells. The Prairie du Chien-Jordan and Mt. Simon Hinkley aquifer supply the majority of groundwater to the region. Yields range from 85 to 2,765 gpm (Norvitch, et.al., 1973).

3.0 SITE INVESTIGATION PROCEDURES

3.1 Soil Boring Placement

The locations of soil borings were based on data obtained from the original tank pit excavations and were positioned to delineate the stratigraphic and areal extent of potential hydrocarbon soil impacts (Figure 4).

3.2 Soil Boring Procedures

Soil boring activities were initiated on February 28, 1991. Thein Well Company of Shakopee, Minnesota performed drilling activities under EnecoTech supervision using a Mobile drill rig and hollow stem augers. Drilling equipment was cleaned by field personnel prior to the drilling of the first soil boring and after each soil boring completion. Cleaning was performed with a high pressure washer and potable water. An EnecoTech geologist monitored cleaning activities and inspected the augers to ensure decontamination had been achieved.

A total of four (4) soil borings were completed to depths of 32 to 47 feet below ground surface (bgs). The soil borings were drilled using a 6 3/4 inch O.D. hollow stem auger. The EnecoTech geologist logged each borehole by describing the geologic materials encountered in the subsurface (Appendix C).

3.3 Soil Sampling Procedures

Soil samples were collected with a split spoon sampler. Split spoons were decontaminated prior to sampling, using a detergent—distilled water—methanol—distilled water rinse cycle. Samples were collected at 5 feet intervals to the final bottom hole depth. Soil samples were screened with an OVM using the MPCA jar headspace analysis technique. The soil sample that contained the highest concentration levels of organic vapors, and the deepest soil sample, were placed in laboratory prepared containers. All samples were labeled, stored on ice, and shipped with a chain of custody form to the analytical laboratory (Appendix D). The soil samples were analyzed for benzene, toluene, ethyl benzene and xylene (BTEX), methyl teritary butyl ether (MTBE), and total hydrocarbons (THC) as gasoline. Analyses were completed using Environmental Protection Agency (EPA) Method 8020 for BTEX, and MTBE, EPA Method 6010 for lead, and EPA Method 8015 for THC—gasoline.

ENVIRONMENTAL CONSULTANTS

4.0 RESULTS AND DISCUSSION

4.1 Site Geology

The soil underlying the site has been characterized to a depth of 47 feet bgs by logging soil samples obtained from soil borings SB-01 through SB-04 (Appendix C). Geologic cross sections developed from these borings are shown in Figures 5, 6 and 7. The site is generally underlain by a medium grained sand which was logged to a depth of 32 feet bgs in soil borings SB-01, SB-03, SB-04, and to 46 feet bgs in soil boring SB-02. Soil borings SB-02 and SB-04 indicate a clay unit from 2.5 to 4.5 feet bgs. A stiff silty to sandy clay was encountered in soil borings SB-02 at 46 to 47.5 feet bgs (end of boring).

4.2 Site Hydrogeology

Ground water was encountered in only one soil boring, SB-02, at approximately 40 feet bgs. Saturated conditions in this boring were logged from 40 to 46 feet bgs. The saturated conditions were encountered in the sand unit. At 46 feet bgs a clay unit, which was at least 1.5 feet thick, was encountered. These conditions indicate that the clay unit, if continuous, may be acting as an aquitard.

4.3 Soil Quality

4.3.1 Soil Sample Organic Vapor Data

Organic vapor readings recorded during soil boring advancements may be found in Table 1. No significant organic vapors were detected in soil samples from soil borings SB-02, SB-03 and SB-04. A sample from soil boring SB-01 had an organic vapor reading of 87 ppm at 10 to 12 feet bgs. This sample corresponds to the bottom elevation of Tank Basin #1. Subsequent samples collected beneath the 10 to 12 feet bgs interval in soil boring SB-01, indicated either non-detectable or very minor (<2.0 ppm) organic vapor concentrations.

4.3.2 Soil Sample Laboratory Analytical Data

Soil samples were collected from the soil borings for laboratory analysis at depths ranging from 10 to 45 feet bgs (Table 2). Detectable concentrations of THC-gasoline at 2.0 ppm was found in soil sample SS-01-10. This concentration remains well below the MPCA regulatory action level of 50 ppm. Benzene was not detected in any of the soil samples analyzed. In addition, lead concentrations all remained within normal limits (1.3 to 9 ppm).

4.4 Hydrocarbon Distribution

The following discussion of the soil petroleum hydrocarbon distribution incorporates the data that was collected during the UST excavations as well as data collected during the soil boring investigation. The distribution of petroleum hydrocarbons in soil are shown in Figures 8, 9 and 10.

Limited soil impacts were encountered in the area of Tank Basins #1 and #2. The soil impacts associated with Tank Basin #1 are restricted to a thin layer of soil directly beneath the former UST location within that basin. These impacts were encountered in soil samples SS-1 and SS-2 collected from the base of the excavation after UST removal (Figure 9). Although both samples contained detectable concentration levels of THC-gasoline at 500 ppm and 240 ppm, respectively, they did not contain detectable concentration levels of benzene.

The soil impacts associated with Tank Basin #2 were restricted to the soil excavated during UST excavation activities. Soil samples SS-3 and SS-4, collected from the base of Tank Basin #2, did not display detectable concentration levels of soil organic vapors, BTEX or THC-gasoline (Appendix A).

Soil boring SB-01 was completed in the center of Tank Basin #1, to assess the vertical extent of impacts beneath Tank Basin #1. A soil sample collected from this boring at 10 to 12 feet bgs, displayed an organic vapor reading of 87 ppm and a laboratory concentration of 2.0 ppm THC-gasoline. However, from 12 to 32 feet bgs (bottom of boring) OVM readings ranged from non-detectable to 1.7 ppm. In addition, soil sample SB-01-30 had non-detectable concentrations for all hydrocarbon constituents analyzed. This data indicates that vertical migration of petroleum hydrocarbons below 12 feet bgs in soil boring SB-01 is extremely limited (Figure 9).

The western, northern, and eastern boundaries of Tank Basins #1 and #2 are defined by soil borings SB-03, SB-04, and SB-02. Generally, no detectable concentration levels of soil organic vapors, BTEX or THC-gasoline were detected in these borings to their bottom hole depths of 32, 32, and 47 feet bgs, respectively (Figure 8 and 10). An OVM reading of 3.4 ppm was recorded in soil boring SB-02 at a depth of 45-47 feet bgs. The cause for this reading is unknown given the non-detectable laboratory results discussed below.

Ground water was encountered at a depth of approximately 40 feet bgs in soil boring SB-02. Soil samples were collected immediately above the water table (SB-02-40) and within the saturated zone (SB-02-45). Both samples revealed non-detectable concentrations for all petroleum hydrocarbon constituents analyzed.

Interpretation of both the UST excavation data and soil boring data indicates that petroleum impacted soil is limited to a thin layer of sand at the base of former Tank Basin #1 (Figure 9).

5.0 SUMMARY

- On October 3, 1990, one (1) 6,000 gallon regular gasoline UST, one (1) 6,000 gallon unleaded gasoline UST, and one (1) 10,000 gallon unleaded gasoline UST were excavated at the subject location. Some corrosion was noted but no holes in the tanks were visible. Soil encountered in the two (2) tank basins consisted of sandy clay.
- Elevated OVM readings were recorded in the soil encountered during the UST's removal activities. OVM readings ranged from 0 to 965 ppm in the two (2) tank basins at depths of 4.5 to 13.5 feet bgs. THC-gasoline was detected in two (2) of the four (4) soil samples collected from the two (2) tank basins. Soil samples SS-01 and SS-02 had THC-gasoline concentration levels of 500 ppm and 240 ppm, respectively. These two (2) samples were collected from the base of Tank Basin #1. However, none of the four (4) soil samples contained detectable concentration levels of benzene.
- o A complete excavation of the petroleum impacted soil was not considered feasible due to the geotechnical instability of the unconsolidated sand and the potential for structural damage to existing above ground structures. Approximately 228 cubic yards of hydrocarbon impacted soil was removed and sent to a local soil incinerator with MPCA approval (Appendix B).
- o Soil boring activities were initiated and completed on February 28, 1991. A total of four (4) boreholes were completed to depths of 32 to 47 feet bgs. The soil borings were drilled using a 6 3/4 inch O.D. hollow stem auger. Sample collection was completed using split spoon samplers.
- o No significant organic vapors were detected in soil boring samples collected from SB-02, SB-03 and SB-04. Soil boring SB-01 was the only soil boring which contained a significant vapor reading (87 ppm) at 10 to 12 feet bgs. From 12 to 32 feet bgs, organic vapors in soil samples from SB-01 ranged from non-detectable to 1.7 ppm (Table 1).
- o Soil sample SB-1-10, collected at 10 feet bgs from soil boring SB-01, had a concentration of THC-gasoline of 2.0 ppm. However, all other soil boring samples analyzed from soil borings SB-01, SB-02, SB-03 and SB-04 contained non-detectable concentrations of benzene and THC-gasoline (Table 2).
- o Groundwater was encountered at a depth of approximately 40 feet bgs in soil boring SB-02. Non-detectable laboratory results from soil samples SB-02-40 and SB-02-45, collected from the water table interface and in the saturated zone, respectively, indicate that ground water has not been impacted by petroleum hydrocarbons (Figure 10).
- o All the available UST excavation and soil boring data indicates petroleum hydrocarbon impacted soil is limited to a thin layer of sand at the base of Tank Basin #1 (Figure 9).

6.0 CONCLUSIONS

The following conclusions are based upon field data generated during the UST excavation and subsequent RI.

- Excavation of impacted soils in Tank Basin #2 has remediated the Tank Basin #2 area. No hydrocarbon impacts were found in the soil samples analyzed from the base of Tank Basin #2.
- The data collected from the soil borings has determined the lateral and vertical extent of impacts. This data indicates that a limited gasoline release occurred in the area of Tank Basin #1. Only a residual layer of impacted soil remains near the bottom of Tank Basin #1 at 10 to 12 feet bgs. By advancing soil borings SB-01, SB-02, SB-03 and SB-04, it was determined that extremely limited lateral and vertical migration of hydrocarbons occurred in the vicinity of Tank Basin #1.
- The analytical data collected from the soil boring samples indicates that hydrocarbon impacts are minimal and remain well below MPCA regulatory action levels.
- o Soil organic vapor readings and soil analytical data collected from soil boring SB-02 indicate that ground water was not impacted by hydrocarbons.
- The data indicates that excavation activities have sufficiently remediated the Tank Basin #1 area.

7.0 RECOMMENDATIONS

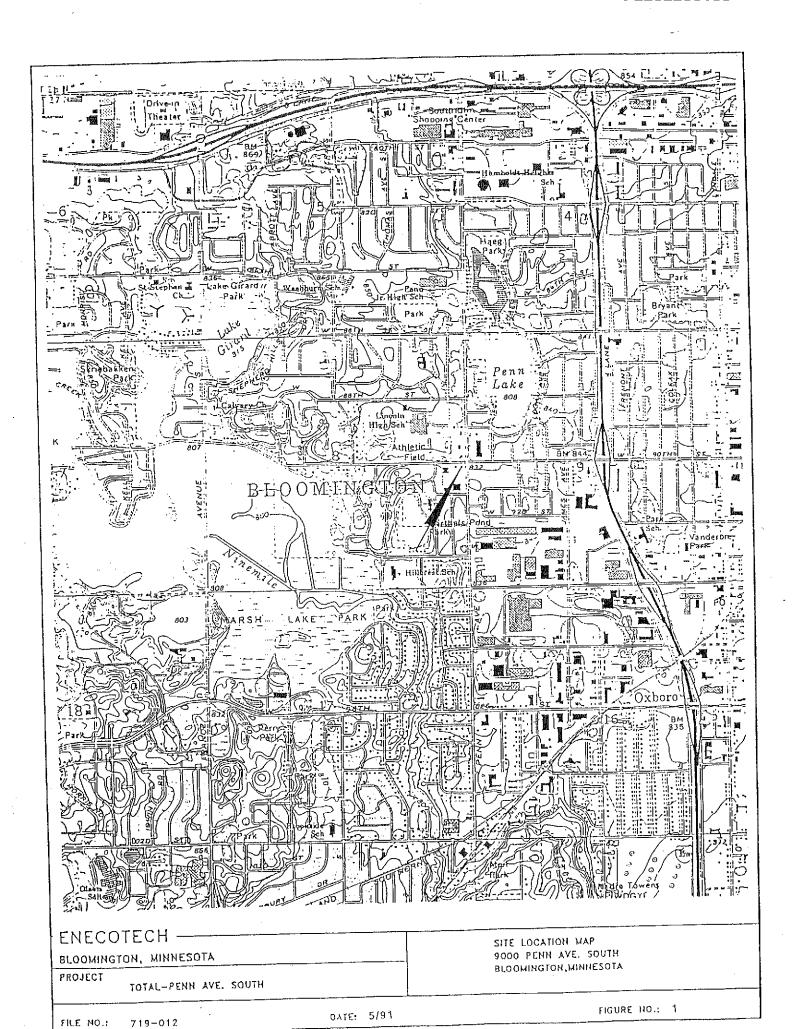
EnecoTech's recommendations are based on conditions at the site at the time of field investigations. These recommendations have been determined from the data that has been generated by tasks outlined in the scope—of—work.

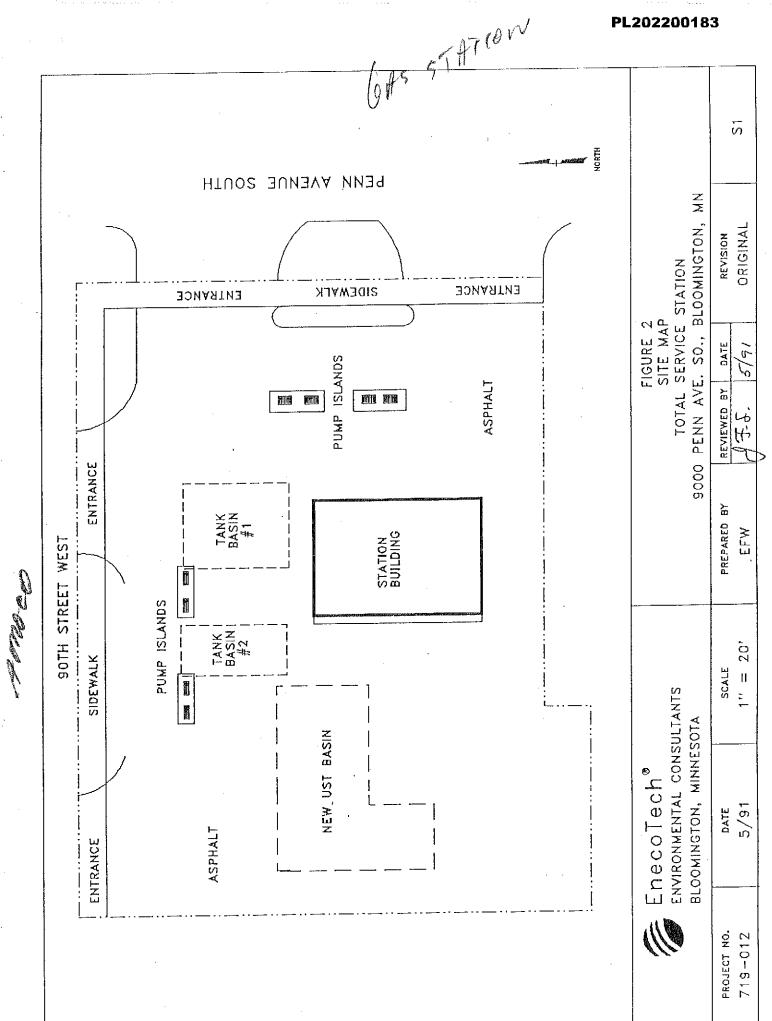
The data indicates that no additional investigation or remediation is warranted. We therefore recommend site closure. This recommendation is based on the following specific data:

- o Petroleum hydrocarbon impacts are limited to a very small area both horizontally and vertically.
- o Soil boring data indicates soil excavation completed during UST removal has sufficiently remediated hydrocarbon impacts.
- o The soil impacts detected during the RI are below MPCA regulatory action levels for soil remediation.
- o Soil sample data indicates that the underlying surficial aquifer has not been impacted by the investigated release.

8.0 REFERENCES

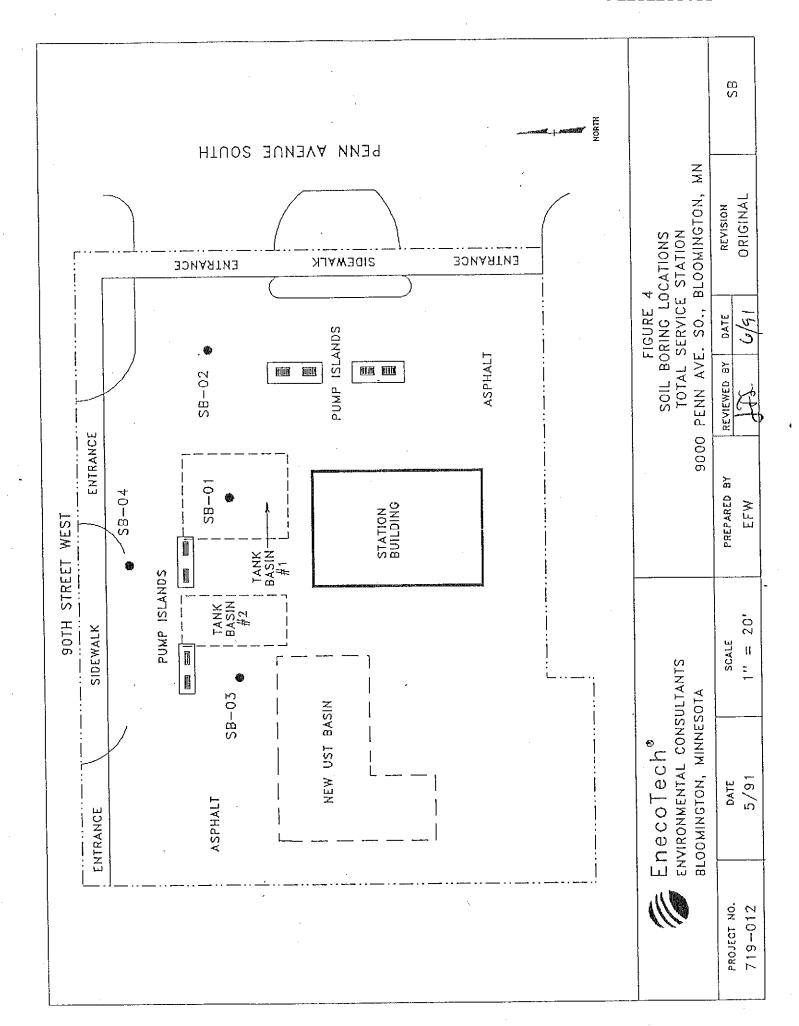
Balabon, N.H., 1989; Geologic Atlas, Hennepin County, Minnesota; County Atlas Series, Atlas C-4; Minnesota Geological Survey.

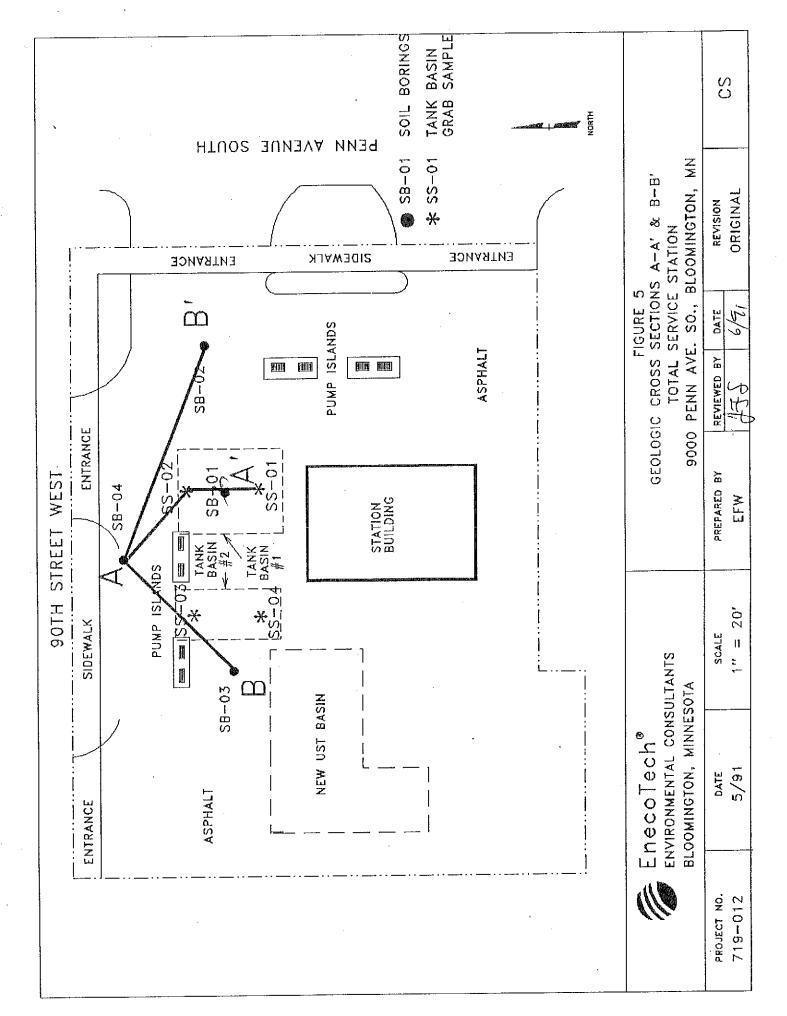

Bloomgren, B.A., Poppe, J.R., 1979 Geologic and Hydrologic Aspects of Tunneling in the Twin Cities Area, Minnesota: Minnesota Geological Survey.

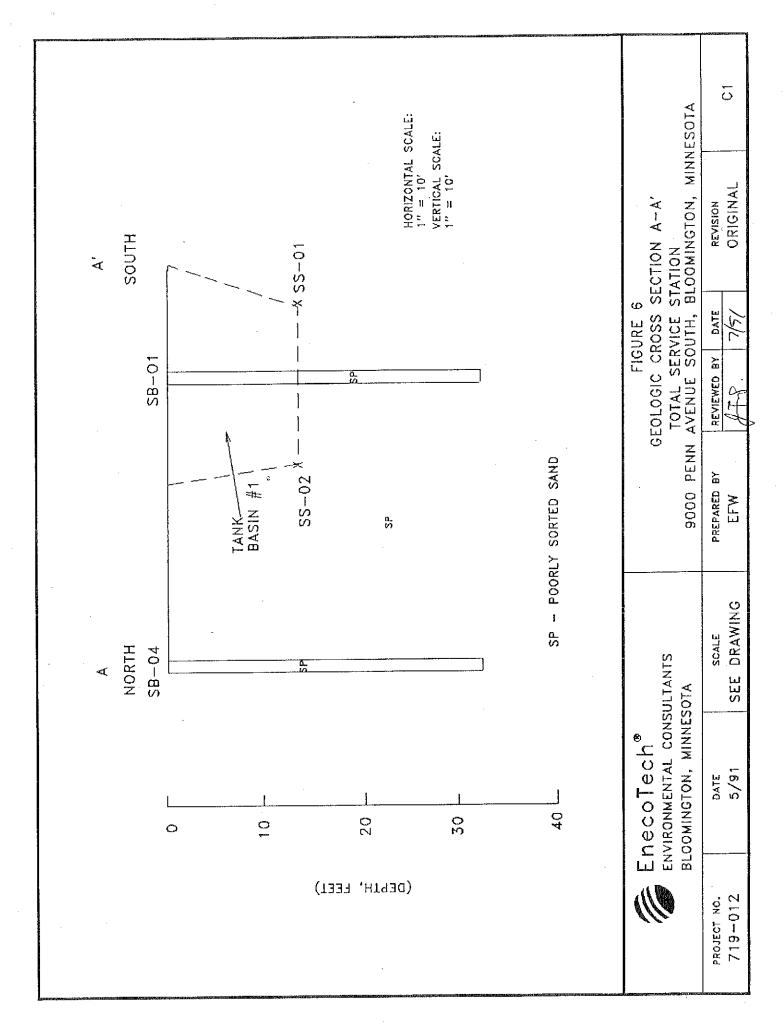

Norvitch, R.F., Ross, T.G., and Brietkriotz, Alex, 1973 Water Resources Outlook for the Minneapolis-St. Paul Metropolitan Area, Minnesota: USGS

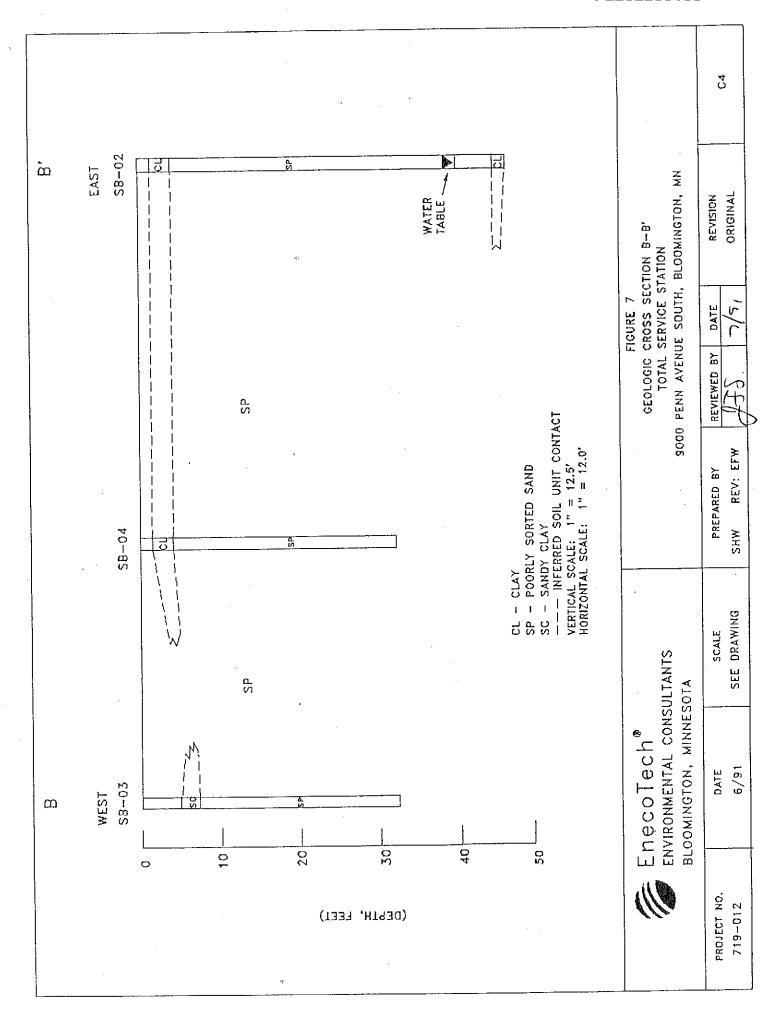
Minnesota Pollution Control Agency Guidelines, 1986. "Procedures for Groundwater Monitoring" MPCA Solid and Hazardous Waste Division Program Development Section.

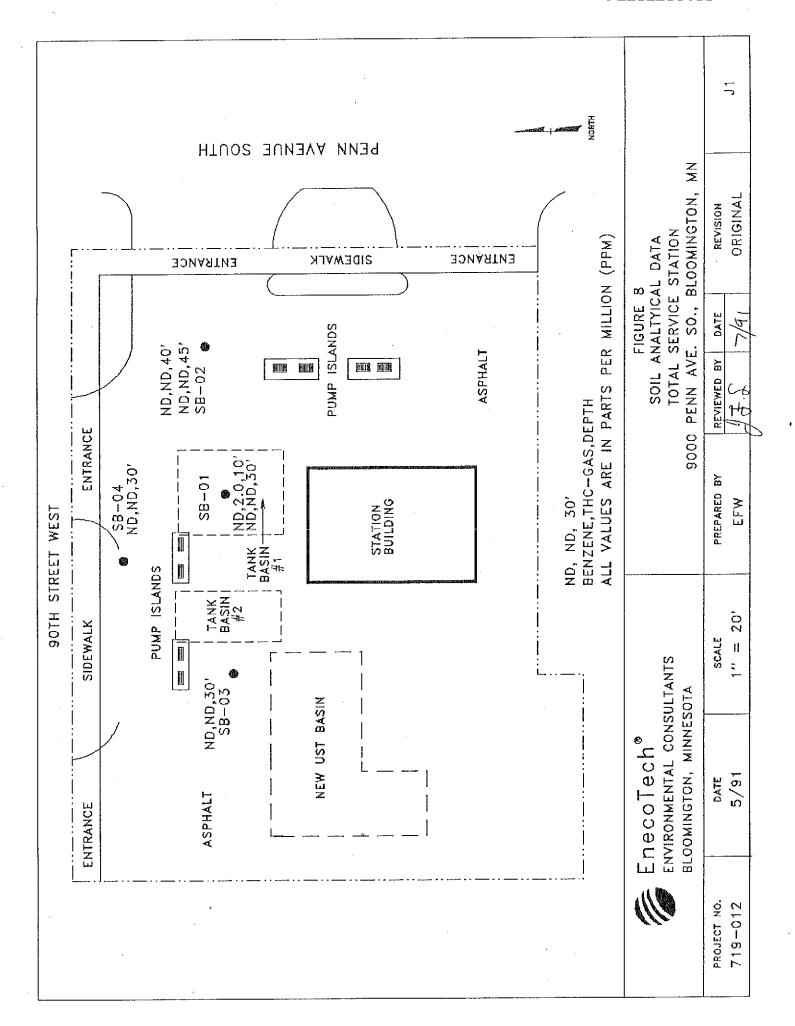
FIGURES

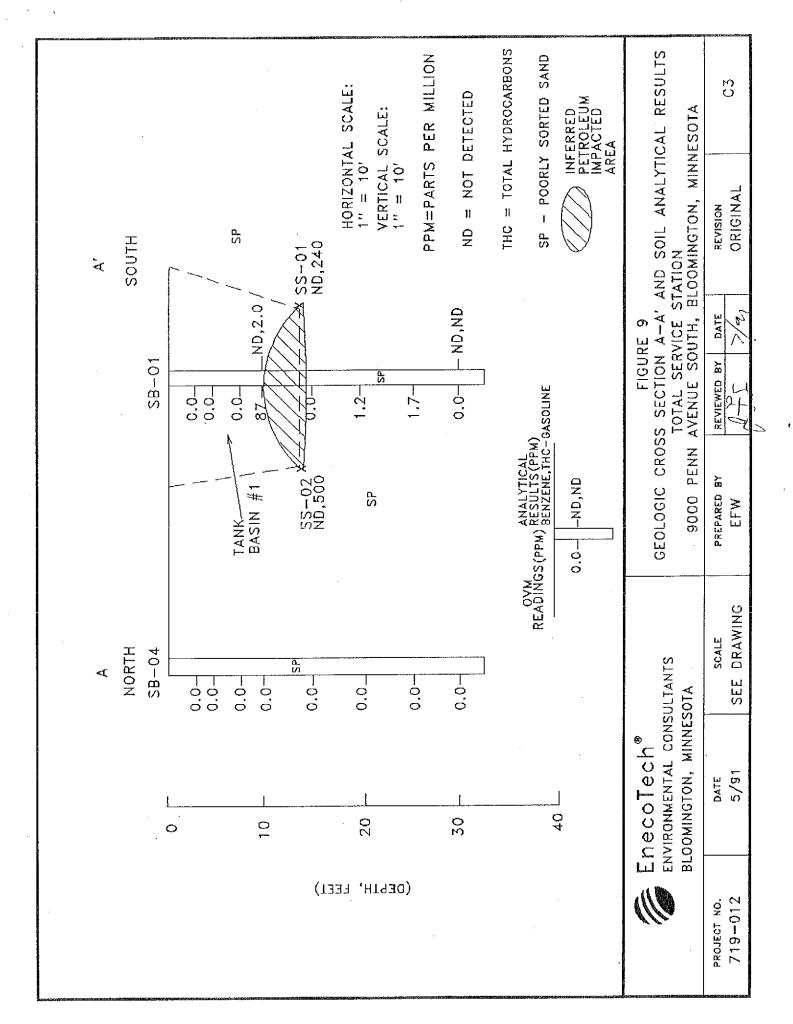

AFTER BALABON, 1989

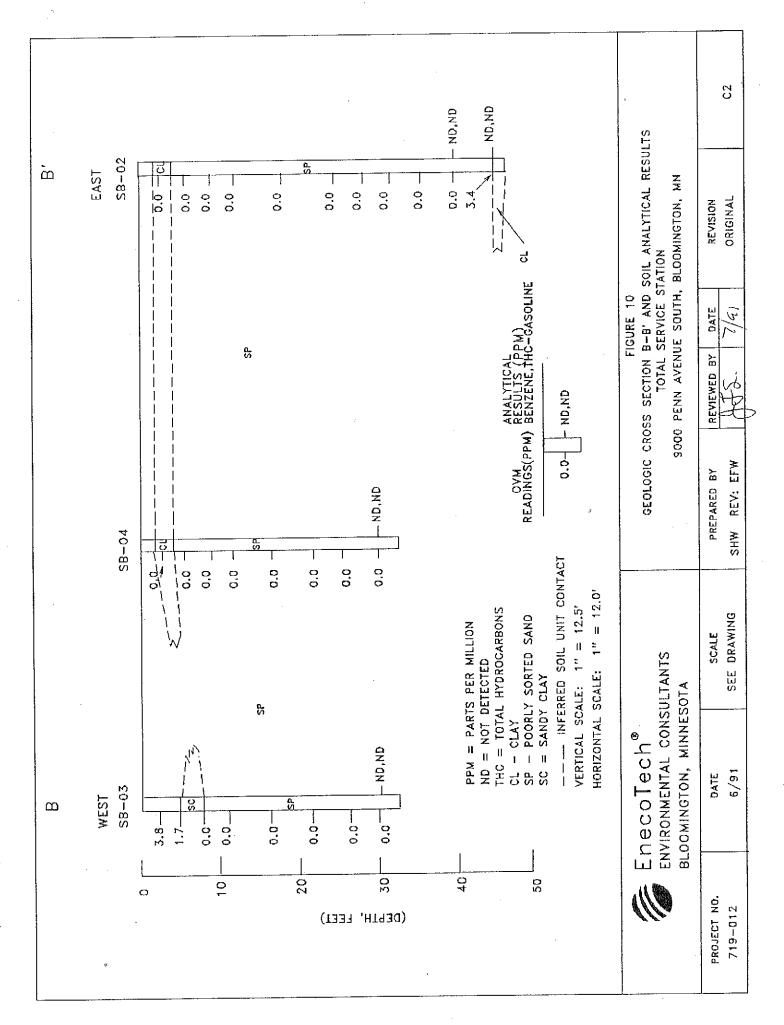



EnecoTech® ENVIRONMENTAL CONSULTANTS BLOOMINGTON, MINNESOTA


FIGURE 3 WATER TABLE/BURIED GL'ACIAL AQUIFER TOTAL PETROLEUM SERVICE STATION 9000 PENN AVENUE SOUTH, BLOOMINGTON, MN


		<u> </u>	YE DIRAGIRS	DEVIEWED BY	DATE	REVISION	
PROJECT NO.	STAG	SCYFE /		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		ORIGINAL	**
708-007	5/91	1:133,000	GVA	1479	5/91	Villantice	





TABLES

TABLE 1 SOIL SAMPLE VAPOR ORGANIC DATA TOTAL PETROLEUM SERVICE STATION 9000 PENN AVENUE SOUTH BLOOMINGTON, MN

DEPTH (FEET)

BORING #	2.5-4.5	5-7	7.5-9.5	10-12	15-17	20-22	25-27	30-32	35-37	40-42	45-47
SB-01	0	0 .	0	87	0	1.2	1.7	0			
SB-02	0	0	0	0	0	0	0	0	0	0	3.4
SB-03	3.8	1.7	0	0	0	0	0	0			
SB-04	0.	0	0	0 -	0	0	0	0			

ALL DATA SHOWN IN PARTS PER MILLION (PPM).
---- NO READINGS RECORDED. END OF BORING AT 32 FEET BELOW GROUND SURFACE (BGS)

TABLE 2 SOIL ANALYTICAL DATA TOTAL PETROLEUM SERVICE STATION 9000 PENN AVENUE SOUTH BLOOMINGTON, MN

HOLE SAMPLE #	SAMPLE DATE	BENZENE	TOLUENE	ETHYL BENZENE	XYLENE	THC GASOLINE	LEAD	MTBE
SB-01-10	2/28/91	<0.06	<0.11	<0.05	0.35	2.0	9	<0.06
SB-01-30	2/28/91	<0.06	<0.11	<0.05	<0.28	<1.2	1.3	<0.06
SB-02-40	2/28/91	<0.06	<0.11	<0.05	<0.28	<1.2	<1.3	<0.06
SB-02-45	2/28/91	<0.06	<0.11	<0.05	<0.28	<1.2	3.	<0.06
SB-03-30	2/28/91	<0.06	<0.11	<0.05	<0.28	<1.2	2	<0.06
SB-04-30	2/28/91	<0.06	<0.11	<0.05	<0.28	<1.2	1.3	<0.06

APPENDIX C SOIL BORING LOGS

SHEET NO. 1 OF 2	- SB-01 - 2/28/91 - 2/28/91 - SPY	NOTES (STRUCTURES, DRILLER'S COMMENTS, GEOLOGIC CLASSIFICATION)			HAMMERING THROUGH FROST						MODERATE HYDROCARBON ODOR		NO HYDROCARBON ODOR			
SOIL BORING LOG ENECOTECH, INC.	THEIN HOLE DESIGNATION MIKE DATE STARTED DATE COMPLETED HSA ENECOTECH SUPERVISOR	SAMPLE DESCRIPTION (COMPONENTS, COLOR, MOISTURE, NATIVE/FILL)		MEDIUM SAND,MIXED WITH GRAVEL, BROWN	SAA, FROZEN	SAA	MEDIUM SAND, LIGHT BROWN	SAA	SAA	SAA	SAA	SAA	MEDIUM SAND, BROWN TO BLACK	MEDIUM SAND, BROWN	MEDIUM SAND WITH 1/8" BEDS OF PEAT THROUGHOUT SPOON	SAA
	CONTRACTO ELEVATION METHOD	0 > E B O	٦	Sp	SP	S	P.	SP S	S S	SP	S)	₀ ,	망	PS.	S.	S O
	DRILLING CONTRACTOR - DRILLER SURFACE ELEVATION - DRILLING METHOD -	ω Η α π π ῶ Η	Ŧ													
	RILLIP ORILLEI SURFACT	¥ >475	Е		0		0		0		87		0		1.2	
		и ш С О > ш к	>-		æ		99		90		90		<u>6</u>		9	
	IVE SO.	OMS.	6"		32		00		7	_	7		202		- ₽	
	IN 4. AVEN	ATION SD SON BL	6"													
19012S1A	TOTAL—PENN 719—012 TOTAL 9000 PENN AVENUE	PENETRATION RECORD SPLIT SPOON BLOWS	6"													
1901	TOTAL- 719-01 TOTAL 9000 P	SPL	6,,													
ı		<u>የሚኒሀገጠ</u> ጀጠ⊢ፗ	00 20	AF	SS	ΑF	SS	ΑF	SS	ΑF	SS	Ą	SS	ΑF	SS	AF.
FILING CODE	PROJECT NAME PROJECT NUMBER CLIENT LOCATION	N 4 Z D Z D M	Œ								SB-01-10					
FI	X X 2 2	E	⊢ 0	2.5	4.5	5,0	7.0	7.5	9.5	10.0	12.0	15.0	17.0	20.0	22.0	22.0 25.0
		DEPTH	OΣ	٥	2.5	4 5	5.0	7.0	7.5	9.5	0.0	12.0	15.0	12.0	20.0	22.0

								 ·	 	 r	r	1	
SHEET NO. 2 OF 2	- SB-D1 - 2/28/91 - 2/28/91 - SPY	NOTES (STRUCTURES,	DRILLER'S COMMENTS, GEOLOGIC CLASSIFICATION)										
ENECOTECH, INC.	HOLE DESIGNATION — DATE STARTED DATE COMPLETED ENECOTECH SUPERVISOR —	CRIPTION	OISTURE, NATIVE/FILL)		EL, LIGHT BROWN	DARK BROWN	OWIN						
SOIL BORING LOG	DRILLING CONTRACTOR - THEIN DRILLER SURFACE ELEVATION - BRILLING METHOD - HSA	SAMPLE DESCRIPTION	(COMPONENTS, COLOR, MOISTURE, NATIVE/FILL)		MEDIUM SAND WITH GRAVEL,LIGHT BROWN	FINE TO MEDIUM SAND, DARK BROWN	MEDIUM SAND, LIGHT BROWN						
	TRAC ATIO HOD	S	> Σ m O		SP	S ₂	ઝ	 	 				
	DRILLING CONTRACTOR DRILLER SURFACE ELEVATION DRILLING METHOD	0 S 0 T 0 R	ᄱᅩᅝᄂ	π									
	DRILL DRILL SURFA DRILL	MVC	> 4 J D	ш	1.7			 					
		a w o	0 > m &	>	100								
	E SO.			6"	45		44						
	\VENU		ron 1 BLO	61,				 	 				
<u> </u>	PENN 2 ENN /		PENETRATION RECORD LIT SPOON B	9, 19					 				
19012S18	TOTAL-PENN 719-D12 TOTAL 90DD PENN AVENUE SO,		PENETRATION RECORD SPLIT SPOON BLOWS	9 ,,9					 	 			
1	1 1 1 3		Σп⊢т		SS	AF		 	 	 			
щ	JMBER JMBER	(O &	2.U TH	zσ	S	∢	SS SS			 			-
FILING CODE	PROJECT NUMBER CLIENT LOCATION		Σ σ.⊐π ⊃Σωπ	υτ			SB-01-30.						
H	£ £ 5 5	王		_0	27	30	32						
		ОЕРТН	i 02	0Σ	25	22	30						

OF 2		O.L.	IFICATION)		,	ROST											
SHEET NO. 1	- SB-02 - 2/28/91 - 2/28/91 - SPY	NOTES (STRUCTURES,	GEOLOGIC CLASS			POUNDING THROUGH FROST											
ENECOTECH, INC.	HOLE DESIGNATION DATE STARTED DATE COMPLETED ENECOTECH SUPERVISOR	PTION	TURE, NATIVE/FILL)			BROWN) BLACK) BLACK	
SOIL BORING LOG	ror - Thein - Mike - HSA	SAMPLE DESCRIPTION	(COMPONENTS, COLOR, MOISTURE, NATIVE/FILL)		MEDIUM SAND, LIGHT BROWN	SANDY CLAY, LIGHT GREEN BROWN	SAA	MEDIUM SAND, LIGHT BROWN	SAA	SAA	SAA	SAA	SAA	MEDIUM SAND, LT BROWN TO BLACK	MEDIUM SAND, DARK BROWN	MED SAND, LIGHT BROWN TO BLACK	MEDIUM SAND, DARK BROWN
	TRACT ATION HOD	S.	≻ Σ @ O	_	S	占	SC	SP	SP	SP	ß	Sp	SP	S ₂	ß	Ω	ςς
	DRILLING CONTRACTOR - DRILLER SURFACE ELEVATION - DRILLING METHOD -	000 0 H & I	አ ካ፯ቤ⊢:	x													
	DRILLIN DRILLER SURFACE DRILLIN	₹.	> <	ш		۵		0		٥		0		٥		0	
	0000	а п 0	о>ш∝	>		100		60		100		100		1DD		100	
	8	- B-111 (8-)	S S S	6"				7		8		10		15		11	
	AVENL	,	TON N BLC	6"													
\$2A	TOTAL-PENN 719-012 ⁻ TOTAL 9DOD PENN AVENUE SO.		PENETRATION RECORD SPLIT SPOON BLOWS	6"													
19012S2A	TOTAL-PI 719-012 TOTAL 9000 PEI		SPLI1	6"													
1	1 1 1 1 64	(0,4	Σ Π⊢Σ	00	ΑF	SS	ĄF	SS	AF	SS	AF	SS	ĄF	SS	AF	જ	AF
FILING CODE	PROJECT NAME PROJECT NUMBER CLIENT LOCATION		Σαπ ⊃Σωπ									TO ALL	-				
FIL	7. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	王		-0	2.5	4.5	Ŋ	7	7.5	9.5	10	12	15	17	20	22	25
		ОЕРТН	LL. 0≾	ΟΣ	٥	2.5	4. 7.	Ŋ	7	7.5	9.5	10	12	15	17	20	22

	_								¢.								 1
SHEET NO. 2 OF 2	- SB-02 - 2/28/91 - 2/28/91 - SPY	NOTES (STRUCTURES,	UKILLEK'S COMMEN'S, GEOLOGIC CLASSIFICATION)								WATER @ ~ 40'	ENCOUNTERED ~ 6" ROCK LAYER @ 431				A CONTRACTOR OF THE CONTRACTOR	
ENECOTECH, INC.	HOLE DESIGNATION DATE STARTED DATE COMPLETED ENECOTECH SUPERVISOR -	SCRIPTION	(COMPONENTS, COLOR, MOISTURE, NATIVE/FILL)		ROWN TO ORANGE/BROWN		MEDIUM TO COARSE SAND, DARK BROWN TO ORANGE/BROWN		LIGHT BROWN		TURATED		GRAY, SATURATED	CLAY, GRAY	Y, GRAY	47.0,	
SOIL BORING LOG	DRILLING CONTRACTOR - THEIN DRILLER - MIKE SURFACE ELEVATION - DRILLING METHOD - HSA	SAMPLE DESCRIPTION	(COMPONENTS, COLOR, M		MEDIUM SAND, LIGHT BROWN TO ORANGE/BROWN	SAA, DARK BROWN		SAA	MEDIUM TO FINE SAND, LIGHT BROWN	SAA	FINE SAND, GREEN, SATURATED	SAA	45-46'- MEDIUM SAND, GRAY, SATURATED	46-46.5'-STIFF SILTY CLAY, GRAY	46.5-47.5'-SANDY CLAY, GRAY	TERMINATED BORING @ 47.0°	
	CONTRACT ELEVATION METHOD	A Ω ⊢ Ω	<u>Σ</u> ω Ο	_	ß	SP	SP	S	SP	앎	S	S.	ß	占	占		
	DRILLING CONTRAC DRILLER SURFACE ELEVATIO DRILLING METHOD	000 N ⊢ N	ж ш х а⊢	Œ							,						
	DRILLING DRILLER SURFACE DRILLING	₩.	> < J >	ш	0		0		0		0		3.4				
			0 > m &	>-	100		Я		100		δ.		5				
	8	- 0 W A	Zunz⊨	9	52		80		34		40		8				
	YVENU		ION BLO	6,,									·				
2B	PENN 2 ENN /		PENETRATION RECORD LIT SPOON B	6"													
19012S2B	TOTAL-PENN 719-012 TOTAL 9000 PENN AVENUE SO.		PENETRATION RECORD SPLIT SPOON BLOWS	6" (
1	1 1 1 1		Σш⊢т		8	AF	x	ΑF	S	AF	જ	ΑF	જ્ઞ		100		
DE	AME LUMBER		2 Z W M	~ (B												:	
FILING CODE	PROJECT NAME PROJECT NUMBER CLIENT LOCATION	<u> </u>	Σ □ □ □								SB-02-40		SB-02-45				
FII	Z 2 2 2	7.H		_ 0	27	30	32	35	37	40	42	45	47				
		ОЕРТН	u⊥o∠	οΣ	25	27	30	32	35	37	40	42	45				

SHEET NO. 1 OF 2	- SB-03 - 2/28/91 - 2/28/91 - SPY	NOTES (STRUCTURES, DRILLER'S COMMENTS, GEOLOGIC CLASSIFICATION)			POUNDING THROUGH FROST											
SOIL BORING LOG ENECOTECH, INC.	OR - THEIN HOLE DESIGNATION MIKE DATE STARTED DATE COMPLETED ASA ENECOTECH SUPERVISOR -	SAMPLE DESCRIPTION (COMPONENTS, COLOR, MOISTURE, NATIVE/FILL)		MEDIUM SAND, LIGHT BROWN	SAA	SAA	MEDIUM SAND W/ CLAY, LIGHT BROWN	SAA	MEDIUM SAND W/GRAVEL, LIGHT BROWN	SAA	MEDIUM SAND W/GRAVEL, LIGHT BROWN	SAA	MED SAND, LT BROWN TO BLACK	MEDIUM SAND, LIGHT BROWN	SAA - BOTTOM 1/2" ON SPOON CONTAINED PEAT	MEDIUM SAND, LIGHT BROWN
	TRACTO ATION HOD)	٦	S S	S S	S.	S	SS	SP ₹	SP	S ≥	8	S S	S S	SP	₽ F
	DRILLING CONTRACTOR - DRILLER SURFACE ELEVATION - DRILLING METHOD -	Σ Ο Ο Ο Ο Ν Η Μ Η Μ Ι			3.8		1.7									
	8888	REVOCER ULAV			<u>س</u>		50		75 0	_	96		0 06		0	
	E SO.	₹ - 	6"				80		14		7		18		18	
	AVENU	rion o on BLO	6**			3										
19012S3A	TOTAL-PENN 719-012 TOTAL 9000 PENN AVENUE SO.	PENETRATION RECORD SPLIT SPOON BLOWS	6"													
	T0TAL- 719-01 T0TAL 9000 F	PE	6,													
ı	38ER 1 1 1	Σ ώ⊢π Μα Σ Ο Ιμ	0 a 7 4	ΑF	જ	AF	ss	ĄF	જ	ĄF	SS	ΑF	8	ΑF	SS	ΑF
FILING CODE	PROJECT NAME PROJECT NUMBER CLIENT LOCATION	N 4 Σ T L L L L L L L L L L L L L L L L L L	<u>د</u>													
FILI	PROJ CLIE LOCA		⊢ 0	2.5	4.5	z,	7	7.5	9.5	9	12	15	17	20	22	25
		R F		0	2.5	4.5	Ŋ	7	7.5	9.5	10	12		17	20 2	22

SHEET NO. 2 OF 2	. SB-03 - 2/28/91 - 2/28/91 . SPY	NOTËS (STRUCTURES,	DRILLER'S COMMENTS, GEOLOGIC CLASSIFICATION)										
ENECOTECH, INC.	HOLE DESIGNATION – DATE STARTED – DATE COMPLETED – ENECOTECH SUPERVISOR –	- MKE - HSA - SAMPLE DESCRIPTION (COMPONENTS, COLOR, MOISTURE,			LIGHT BROWN				-				
SOIL BORING LOG	.TOR .				MEDIUM SAND W/GRAVEL, LIGHT BROWN	SAA	COARSE SAND, BROWN						
	DRILLING CONTRACTOR - DRILLER - SURFACE ELEVATION - DRILLING METHOD -	<u>₹₩₩₹</u> ∾≻Σ⊞О⊓			망	S	ςς			ļ 		 	
		000% N											 -,
		DVM LLA<		LIJ	_0		0				 	 	
			ひき	>	8								
	ਜ਼ ਲ		SHS	9,,	35		23						
	AVENI		NOI ON	6,11									
838	-PENN 12 PENN		PENETRATION RECORD	9.1									
19012538	TOTAL-PENN 719-012 TOTAL 9000 PENN AVENUE SO.	PENETRATION RECORD SPLIT SPOON BLOWS		6,,						 	 		
. 1	я Н I I I ·	N A Z G T M M M M M M M M M M M M M M M M M M				AF	SS	·					
FILING CODE	PROJECT NAME PROJECT NUMBER CLIENT LOCATION						SB-03-30						
FI	%%. 200	E		⊢0	27	æ	32						
		ОЕРТН	μα	ΟΣ	25	27	8			i:			

SHEET NO. 1 OF 2	- SB-04 - 2/28/91 - 2/28/91 - SPY	NOTES (STRUCTURES,	DRILLER'S COMMENTS, GEOLOGIC CLASSIFICATION)														
G ENECOTECH, INC.	HOLE DESIGNATION DATE STARTED DATE COMPLETED ENECOTECH SUPERVISOR	SAMPLE DESCRIPTION (COMPONENTS, COLOR, MOISTURE, NATIVE/FILL)	IR, MOISTURE, NATIVE/FILL)		IT BROWN	', LIGHT BROWN	IT BROWN	IT BROWN								OF PEAT @ ~ 21.5'	< BROWN
8 2 1 1	 		(COMPONENTS, COLC		MEDIUM SAND, LIGHT BROWN	SANDY, SILTY CLAY, LIGHT BROWN	MEDIUM SAND, LIGHT BROWN	MEDIUM SAND, LIGHT BROWN	SAA W/1/2" LAYER OF PEAT @ ~	MEDIUM SAND, DARK BROWN							
	TRACT ATION HOD	4 W F	<u>≻</u> ΣωΟ		S	<u>ل</u>	ß	Sp	SP	SP	SP	S	SP	망	ß	ςς	Sp
	DRILLING CONTRACTOR - DRILLER SURFACE ELEVATION - DRILLING METHOD -	0 S 0 T 0 R	∝ mz⊕⊢	ı													
	DRILLI DRILLE SURFAC DRILLI	DVM	> < 1 >	w		0		۵		٥		٥		٥		0	
			0 > u &	>		8		75		90		8		8		66	
	TOTAL-PENN 719-D12 TOTAL 9000 PENN AVENUE SO			6"													
	N AVEN		PENETRATION RECORD SPLIT SPOON BLOWS	9													
S4A	TOTAL-PENN 719-D12 TOTAL 9DDD PENN		NETRA RECOR T SPO	6"													
19D12S4A	TOTAL-PI 719-D12 TOTAL 9DDD PEI	!	SPLI	6"													
t	1 1 1 1 K	ΣΠ⊢ ΙΟΟ ΣΠ⊢ ΙΟΟ			AF	જ્ઞ	ΑF	SS	AF	SS	AF	SS	AF	SS	ĄF	ន	AF
JOE	PROJECT NUMBER CLIENT LOCATION	. Z															
FILE CODE		ν×															
Œ	2011	рертн		⊢ 0	2.5	4.5	5	7	7.5	9.5	10	12	15	17	S	22	25
		DEF	Lα	οΣ	٥	2.5	4.5	5	7	7.5	9.5	9	12	15	17	22	22

SHEET NO. 2 OF 2	- S8-04 - 2/28/91 - 2/28/91 - SPY	NOTES (STRUCTURES,	DRILLER'S COMMENTS, GEOLOGIC CLASSIFICATION)												
SOIL BORING LOG	A THEIN HOLE DESIGNATION MIKE DATE STARTED DATE COMPLETED A RECOTECH SUPERVISOR	SAMPLE DESCRIPTION	(COMPONENTS, COLOR, MOISTURE, NATIVE/FILL)		MEDIUM SAND, LIGHT BROWN	SAA	COARSE SAND MIXED W/GRAVEL, BROWN			,					
	DRILLING CONTRACTOR - DRILLER SURFACE ELEVATION - DRILLING METHOD	N>Emon			g,	S V	SP		-a arma velova ve						
		000 R H S	π												
	RILL RILLE URFAC RILL	M√C	> 々 」 コ	E	0		0						·		
			0 > m &	>	100		100								
	. 80.	חות		6"											
	VENU		PENETRATION RECORD SPLIT SPOON BLOWS	9,,									 		_
4B	PENN 2 ENN A		PENETRATION RECORD LIT SPOON BI	6" (A .				 		
19012S4B	TOTAL-PENN 719-012 TOTAL 9000 PENN AVENUE SO.		PENE RE												
1	7.7.7.29	E H C D										 	 		
	ME MBER	முக	<u> </u>	<u> </u>	SS	AF	SS				· · · · · ·	 •			-
FILE CODE	PROJECT NUMBER CLIENT LOCATION	ν 4	œ			SB-04-30									
ഥ	P. P	Æ		Τ	27	98	32	`							
		DEPTH	Ŀα	ΟΣ	25	27	30							.]	

Minnesota Pollution Control Agency

520 Lafayette Road North | St. Paul, Minnesota 55155-4194 | 651-296-6300

800-657-3864 | 651-282-5332 TTY | www.pca.state.mn.uc | Equal Opportunity Employer

December 16, 2011

I - TANK REMOVAL LETTER

Mr. Ned Abdul Bloomington Investments, LLC 510 1st Avenue North, Suite 200 Minneapolis, MN 55403

RE: August 4, 2011, Underground Storage Tank Field Citation - Completion of Corrective Action for Minnesota Pollution Control Agency Tank Site No. 2635 – 9000 Penn Avenue South, Bloomington, Minnesota

Dear Mr. Abdul:

This letter acknowledges that Bloomington Investments, LLC (Regulated Party) has completed the corrective action described in the Minnesota Pollution Control Agency's (MPCA) August 4, 2011, Underground Storage Tank Field Citation by removing the tanks from the ground. The MPCA also acknowledges receipt of the Regulated Party's check in the amount of \$750 received on September 22, 2011.

On December 8, 2011, the Regulated Party's MPCA certified tank contractor removed the three underground storage tanks from the ground at 9000 Penn Avenue South, Bloomington, Minnesota. MPCA staff was present during the removal of the tanks. Based upon this information, the MPCA staff has determined that the corrective action contained in the Field Citation has been completed.

If you have any questions, please contact me at 651-285-8666.

Thank you for your attention to this matter and your cooperation in fulfillment of the requirements.

Sincerely,

Shirley Smith

Pollution Control Specialist Senior Compliance and Enforcement Section Industrial Division

Julla Go

\$JS:map

cc: Michael Wilson, Hennepin County Department of Environmental Services

Carmen Netten, Attorney General's Office Bob Dullinger, MPCA

Nate Blasing, MPCA

MPCA Enforcement Data Coordinator-Enforcement Database Tracking Number #13134

Shirley Smith, MPCA

MPCA Tank Site No. 2635 File